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There are many wonderful resources for the study of symmetric polyhedra
in Euclidean space. Try any of [4, 1, 2, 3] or [6] in the references at the end.
We have drawn many problems from these sources, without attribution.

Before proceeding, let’s review some terminology.

• Spaces: Euclidean n-space is En, so the plane is E2, ordinary space is
E3, etc. A unit sphere in En is Sn−1.

• Schläfli symbols are convenient abbreviations for regular and other
polytopes.

For any integer p > 3, {p} will denote a convex regular p-sided polygon
(i.e. p-gon). These are all similar for a fixed p, so we can often neglect
size.

The symbols {2} and {∞} are also meaningful.

The regular convex polyhedron P = {p, q} (Platonic solid) likewise has
identical p-gonal faces, q around each vertex. If one chops off near a
vertex A in the most symmetrical way, one exposes a {q}, the vertex-
figure at vertex A.

So we have {3, 3} (tetrahedron), {3, 4} (octahedron), {4, 3} (cube),
{3, 5} (icosahedron), {5, 3} (dodecahedron).

• The regular star-polyhedra were described by

Kepler (ca. 1619) {5
2
, 5} (small stellated dodecahedron),

{5
2
, 3} (great stellated dodecahedron)

Poinsot (ca. 1809) {5, 5
2
} (great dodecahedron),

{3, 5
2
} (great isosahedron)
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• For completeness here are the classical convex regular polytopes of
higher rank, their Schläfli symbols and the corresponding symmetry
groups (=finite Coxeter groups with string diagram):

name symbol # facets (Coxeter) group order
n = 4:
simplex {3, 3, 3} 5 A4 ' S5 5!
cross-polytope {3, 3, 4} 16 B4 384
cube {4, 3, 3} 8 B4 384
24-cell {3, 4, 3} 24 F4 1152
600-cell {3, 3, 5} 600 H4 14400
120-cell {5, 3, 3} 120 H4 14400

n > 4:
simplex {3, 3, . . . , 3} n+ 1 An ' Sn+1 (n+ 1)!
cross-polytope {3, . . . , 3, 4} 2n Bn 2n · n!
cube {4, 3, . . . , 3} 2n Bn 2n · n!

• Euler’s Formula states that for any convex polyhedron with v ver-
tices, e edges and f facets, we have

v − e+ f = 2 . (1)
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Problems

1. Give Euler’s formula for a convex n-dimensional polytope.

2. Prove that no convex polyhedron can have exactly 7 edges. (We aren’t
assuming anything about symmetry here.)

3. What are the possible edge numbers for a general convex polyhedron
in E3?

4. Show that a general convex polyhedron in E3 has either a triangular
face or a vertex of degree 3 (or both).

5. Show that the edge number e for {p, q} is given by

e−1 = p−1 + q−1 − 1

2
.

6. Determine the section of (i) a {3, 3} by a plane midway between two
opposite edges; (ii) a {4, 3} by a plane midway between two opposite
vertices; (iii) a {5, 3} by a plane midway between two opposite vertices.

7. Prove that τ := 2 cos(
π

5
) satisfies τ 2 = τ + 1.

8. Find a formula for the dihedral angle of {p, q}. (Clearly this angle is a
symmetry invariant; so your answer should be a function of just p and
q.)

9. Every regular polyhedron {p, q} can be inscribed in a sphere. If the
(common!) length of all edges in {p, q} is 1, find a formula for the
circumradius R.

10. Show that a {3, 3} can be inscribed in a cube {4, 3}. (The vertices of
the regular tetrahedron are found amongst those of the cube.) In fact,
how many such tetrahedra can be found in one cube?

11. Show that a {4, 3} can be inscribed in a dodecahedron {5, 3}. How
many such cubes are there in one dodecahedron?

12. Find ordinary rectangular coordinates for the regular isosahedron {3, 5}.

13. Prove that {3, 3} and {3, 4} have supplementary dihedral angles.
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14. Prove that space E3 can be tiled in a symmetric and face-to-face way
by copies of {3, 3} and {3, 4}.

15. Give the Schläfli symbol for the usual tiling of space by identical unit
cubes. (This regular tessellation is an example of an infinite abstract
regular 4-polytope.)

16. Which of the Platonic solids is described by |x|+ |y|+ |z| 6 1 in R3?

17. Find vertices for the 4-cube {4, 3, 3} and cross-polytope {3, 3, 4} in E4.

18. Determine v, e, f for the Kepler-Poinsot star-polyhedra {5
2
, 5}, {5

2
, 3},

{5, 5
2
}, and {3, 5

2
}. What happens with Euler’s formula?

19. Which of the star-polyhedra have a face vector [v, e, f ] identical to the
face vector of some Platonic solid? Is there anything meaningful in this
comparison?

20. The cuboctahedron is perhaps the most familiar uniform polyhedron
(or Archimedean solid) which is not regular:

Sometimes the cuboctahedron is given the Schläfli symbol

{
3
4

}
. But

a more informative notation is the decorated diagram

• 4 •©3 •

Show how a solid cuboctahedron is situated as a subset of the cube
with vertices (±1,±1,±1). What then are the vertices of the cubocta-
hedron?

4



21. Take two identical 1× 1× 1 cubes. Dissect the second of these into six
square based pyramids, with common apex at the centre of the cube.
Then place these pyramids on the faces of the first cube. What new
polyhedron results? Is it convex? What is its group of symmetries?

Find the face vector of this object. Compare it with the face vector of
the cuboctahedron. What is going on?

22. The polyhedron in the previous problem is called the rhombic dodec-
ahedron. It has two kinds of vertices; however, its faces are all alike,
being parallelograms of a certain shape.

Show that the rhombic dodecahedron is a space-filler, that is, congruent
copies can be arranged to tile E3 in a face-to-face manner (indeed in a
very symmetric way).

23. Take a rectangular strip of paper, say 2cm × 20cm and weave it loosely
into an ordinary (trefoil or overhand) knot. Now carefully tighten the
knot, snug up the strip and flatten it. What regular polygon do you
get? Why?

Some Weaving Problems([5, 7])

24. Construct two paper strips of 4 equilateral triangles, as in the following
figure. (You could print out the template at the end of these problems.)

Crease the strips (along the dotted lines, of course). Now weave to-
gether the two strips, in over-under fashion, to get a regular tetrahe-
dron {3, 3}. There should be no loose bits; the ends of the strips should
be tucked away, and your model should be sturdy.

Suppose the strips are coloured. Weave the strips so that every colour
has equal exposed area. How many different colour groups can arise?
That is, what subgroups of S4 respect the colouring in a properly con-
structed model?
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25. Make a cube in similar fashion using three strips of five squares (in
three distinct colours). What colour groups arise?

If you use the template at the end, you should be able to inscribe your
woven tetrahedron inside your woven cube.

26. See [5] or [7]. Investigate the construction of the remaining Platonic
solids, as well as other symmetric polyhedra.

27. Cut out any acute angled triangle and fold up along the joins of the mid-
points of the edges. The tetrahedron which results is called a tetragonal
disphenoid. Prove that the resulting polyhedron has congruent faces
and congruent dihedral angles; however, it is usually not regular.

28. Find a tetragonal disphenoid which tiles E3.

29. Prove that the six edges of any tetrahedron can be realized as the
diagonals (one each) of the six faces of a a suitable parallelopiped.

What sort of tetrahedron gives a rectangular parallelopiped (i.e. brick)?

What further restriction yields a tetragonal disphenoid (see item (27)
above)?

30. Resist! Throw away the faces of {p, q}. What remains is an interesting
and symmetric graph called the 1-skeleton of the solid. Suppose a 1Ω
resistor is placed along each edge. What is the net resistance between
a pair of nodes in the resulting circuit?

(There is one such resistance for the tetrahedron, three for the cube,
etc.)

31. You have two identical wooden cubes A and B. Is it possible to drill
an ordinary cylindrical hole through A, along which you can pass B?
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Wythoff’s Construction for Uniform Polyhedra

32. Interpret these symbols:

(a) • 3 •©3 •
(b) •©3• 3 •©
(c) •©3 •©3 •©
(d) •© •© •©
(e) •©4 •© •©
(f) • 3 •© •©

33. In fact, Wythoff’s construction remains significant in En. Now the
dimension n equals the number of nodes in the diagram. So interpret
these diagrams:

(a) •©
(b) •© •©
(c) • 4 •©
(d) •© 5 •©

34. Assign diagrams to various other Archimedean solids: truncated tetra-
hedron, truncated octahedron, truncated cube, cuboctahedron, rhom-
bicuboctahedron, rhombiicosidodecahedron, truncated icosidodecahe-
dron.

35. In [3, pp. 17–18] Coxeter describes a variant of Wythoff’s construc-
tion in which we employ just the subgroup [p, q]+ of rotations in the
reflection group [p, q].

Recall that the mirrors of reflections in [p, q] cut an invariant sphere into
copies of a basic spherical triangle Φ, whose angles are π/p, π/q, π/2.
These copies correspond in 1 − 1 fashion to the group elements. In
particular, the base triangle Φ, which we will colour white, corresponds
to the identity e. The triangles can then be coloured alternately black
and white, so that the rotation subgroup [p, q]+ corresponds to the
white triangles; the black triangles correspond to the other coset (of
opposite symmetries, either reflections or rotatory reflections).
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We pick a vertex v in the white base triangle Φ. Its convex hull will
be a solid which is symmetric under at least [p, q]+. Typically, we can
choose v in one way so that all resulting polygonal faces are regular.
In this case we may summarize the construction by a diagram with
‘empty nodes’, as below.

Interpret the diagrams:

(a) © 3 © 3©
(b) © 3 © 5©
(c) © 4 © 3©
(d) © 3 © ©
(e) © 4 © ©
(f) © © ©
(g) © 3©
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Strips for Weaving a regular tetrahedron {3,3}  and a cube {4,3}


