Barry Monson (bmonson@unb.ca)
University of New Brunswick, Department of Mathematics and Statistics, Fredericton, NB E3B 5A3 Canada.

Reflection and Rotation Groups in Ordinary Space

The symmetry of a regular polyhedron or Archimedean solid \mathcal{P} in \mathbb{R}^{3} is embodied in its symmetry group $\Gamma=\Gamma(\mathcal{P})$. I will discuss and enumerate the relevant groups Γ, which turn out to be generated by reflections, or occasionally just rotations, in a very special way. (See [1] for some indication of the very rich mathematics that this leads to.)

Next we will see how to start with the group Γ and from it reconstruct the polyhedron \mathcal{P}, using a beautiful technique developed by Coxeter [2].

In many cases, this construction can be realized physically (well, optically) in a kaleidoscope. (I will attempt to bring an unbroken glass model from Canada.) Finally, I will show you a Maple program devised by Ryan Oulton, an undergraduate at UNB, which gives you assembly instructions based on a very simple input. For example, the command
kaleidoscope ($3,5,1,1,0$)
produces a motif for building a truncated icosahedron (topologically, a soccer ball). But it is fun to avoid computers, if you wish.

References

1. H.S.M. Coxeter, Regular Complex Polytopes (2nd Edition), CUP, Cambridge, 1991; see pages 9-25 in particular.
2. H.S.M. Coxeter, Wythoff's construction for uniform polytopes, Proc. London Math. Soc. 38 (1935), 327-339. [Reprinted in The Beauty of Geometry: Twelve Essays, Dover, NY, 1999.]
3. B. Monson: trawling through my web-site you can find relevant materials at
http://www.math.unb.ca/~barry/summer2011/indexsum.html
or at
http://www.math.unb.ca/~barry/fields/
