
The symmetry groups for polygons, polyhedra, polytopes
of the most symmetric kind

1. For an integer p > 2, suppose v1, . . . , vp are equally spaced
points on a circle. Connect these in cyclic order by
edges ej = [vj, vj+1], for 1 6 j 6 p, taking subscripts modulo
p. Thus ep closes the cycle by connecting vp to v1.

We obtain a regular p-gon, denoted {p}:
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But what if  p = 2?

2. Suppose p > 3. We see that {p} is a familiar convex polygon.
After replacing each edge by the circular arc it spans, we obtain
circular p-gons with the same abstract structure. (Think of the
vertices and edges as defining a graph.)

It therefore makes sense to say that the digon {2} (see the
figure above) has two vertices and two edges. We just cannot
separate the edges if we insist on using straight line segments.

3. What is the symmetry group Dp of the regular polygon {p}?
The mirrors for the various reflection symmetries are lines,
all passing through the centre O of the circumscribing circle.
These mirrors divide the plane into angular regions. The num-
ber of such regions will equal the order of the symmetry group.
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Definition 0.1. For p > 2, the symmetry group of a regular
p-gon {p} is denoted Dp.

Warning. There is much disagreement about whether the sub-
script p should be a little different (see below).

4. We have observed for the equilateral triangle and the square
that we get generating reflections by taking two distinct mirrors
separated by the smallest possible angle. For a {p}, this angle
will be π/p.

To make the process a little more susceptible to generalization
in higher dimensions, let us do the following. A flag of the
polygon is a pair consisting of an incident vertex and edge. (It
will turn out that the order of the symmetry group Dp equals
the number of such flags. Of course, this order equals 2p, since
every vertex lies on 2 edges. Some authors, including at other
times myself, use the order 2p as subscript, instead of just p
itself.)

So choose any one flag as your base flag, say [v1, e1] to be spe-
cific. Let

• r0 be the reflection in the perpendicular bisector of edge
e1. Thus

r0 : v1 → v2

e1 → e1

In short, r0 moves the 0-dimensional ‘face’ ( = vertex) of
the base flag and fixes the 1-dimensional face ( = edge).
(As one entity, edge e1 is fixed; of course, it is flipped end-
for-end in the process.)

• r1 be the reflection in the line joining O to v1. Thus

r1 : v1 → v1

e1 → ep

In short, r1 moves the 1-dimensional ‘face’ ( = edge) of the
base flag and fixes the 0-dimensional face ( = vertex).
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A fundamental region for the action of the symmetry group Dp

on the polygon {p} has been shaded in. Repeated application
of r0 or r1 will move this region to all 2p available positions.

Thus Dp has generators r0, r1; once again we see that the order
is 2p.

The group Dp is called dihedral since we imagine it generated
by two reflections. In fact, we can make an actual kaleidoscope
corresponding to this group by using two real mirrors, hinged
at the angle π/p and placed vertically on a table.

5. A presentation for Dp.

We can reason as we did for the equilateral triangle or square:
explicitly list the 2p elements of the group. Alternatively one
can use coset enumeration on the trivial subgroup. In any case,
a presentation is

Dp : 〈 r0, r1 | r20 = r21 = (r0r1)
p = 1〉

This sort of presentation means that Dp is an example of a Cox-
eter group. These groups appear all throughout mathematics,
often in places which wouldn’t seem to have much to do with
polygons or polyhedra.

Very Important Convention. I like to compose geometric
and algebraic mappings left-to-right. Thus

r0r1 means first apply r0 then apply r1.
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6. Exercises.

(a) Fix a background label ‘j’ next to vertex vj for each j. Use
this to represent the generators r0 and r1 as permutations
R0, R1 on {1, . . . , p}.
Compute R0R1 in this representation. For which p is the
resulting group 〈R0, R1〉 of permutations isomorphic to Dp?
In other words, can the permutations ever fail us?

(b) Pedantic Note: rj is a geometric reflection, whereas Rj

is a permutation, a quite different beast. Thus, if we are
trying to be very careful, we need such notation. But in
practice, out of the sight of fussy professors, we might con-
veniently confuse rj and Rj.

(c) Clearly 〈R0, R1〉 is a subgroup of Sp. Can the subgroup
equal the whole group for any p?

(d) What goes wrong with the above permutations when p =
2? Correct that to give a faithful permutation representa-
tion of Dp, say as a subgroup of S4.

(e) Compute on geometrical grounds the number of conjugacy
classes in Dp. (Intuitively, a conjugacy class consists of all
symmetries which act in the ‘same’ geometrical way on the
p-gon. Here ‘same’ will mean ‘up to relocation via any and
all elements of the surrounding group, here Dp.)

Find out how to retrieve a permutation version of Dp in
GAP and check your conjectures about the number of con-
jugacy classes for several small values of p.
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The Finite reflection groups G

Our examples indicate that regular polygons and polyhedra,
and presumably their higher dimensional kin, have symmetry
groups generated by reflections. We survey these groups in
ordinary space.

7. Suppose then that G is a finite group generated by reflections
in R3 and pick any point P . Its orbit, OrbG(P ), is finite, since
G is finite. The orbit therefore has a well-defined centroid O.

But since G consists of isometries, each of which rearranges the
points in the orbit, it must be that O is fixed by every element
of the group. Furthermore, since G consists of isometries, this
means that G fixes as an entity any sphere centred at O. In
short, we can track the action of G by examining how it acts
on the unit sphere S2 centred at O:

θ

A

A’

O

for r
1

great circular

mirror for  r
2

Any reflection in G has a plane mirror passing through O. This
mirror meets S2 in a great circle. Two such mirrors intersect
in a line which meets the sphere at antipodal points A and A′,
as shown above. Notice that two distinct great circles always
intersect in a pair of antipodal points.

The (dihedral) angle θ from one such mirror to another appears
to a spherical bug living on S2 as an angle on the surface of the
sphere. Just as in the Euclidean plane, we find that a product
r1r2 of reflections equals a rotation through angle 2θ with centre
A. If the angle appears to be anticlockwise as we view A from
outside the sphere, then it will appear clockwise at A′.
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8. Now experience with kaleidoscopes informs us that all the mir-
rors for reflections in G will cut S2 into various congruent,
spherical polygons. Any one of these polygons (call it K) serves
as a fundamental region for the action of the group G. This
means that by repeated reflection in the great circles bounding
K, we are able to cover the entire sphere once over.

From another point of view, K is a smallest region enclosed
by mirrors but not penetrated by any mirror of symmetry. If
the polygon K has n sides, let’s label the bounding reflections
r1, . . . , rn is cyclic order:
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The region K

   (n = 4)

9. Look at the reflections r1, r2 in two consective sides of K. Sup-
pose the angle (interior to K) from side 1 to side 2 is θ. Then
r1r2 is a rotation with angle 2θ. But r1r2 has some period
m > 2 as an element of the group G, so (r1r2)

m = 1.1 (If
m = 1 we would have r1 = r2 and the two mirrors would coin-
cide.) Since the identity 1 is a rotation through some multiple
of 2π, we must have m(2θ) = 2πk for some integer k. Being
a period, m is minimal for this last condition, so m and k are
relatively prime. Thus 1 = gcd(m, k) = xk − ym, for certain
x, y ∈ Z. Now we see that the rotation g := (r1r2)

x in G has
angle

x(2θ) =
x2πk

m
=

2π

m
+ 2πy .

Thus rotation g has angle 2π/m.

1Note that the symbol 1 is used in various ways: an integer, the identity in a group
generated by relections, etc. This abuse of language is most convenient.
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Now let r be reflection in the line x located π/m along from
the mirror for r1:

K
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m

This line is interior to the region K if k > 1; but we don’t
yet know if r is in the group. However, r1r is also a rotation
through 2π/m, so r1r = g and r = r1g really is in the group
G. This contradicts our construction of the region K if k > 1.
(We chose K so that no mirrors penetrate its interior.)

10. Conclusion. Each interior angle of K has the form π/m for
some integer m > 2. (Such angles are called submultiples of π).

11. The area of a spherical polygon

A lune is a region of S2 bounded by two great semicircles. In
the figure on page 5 you can see four lunes terminating at A and
A′. Look at the lune specified by the angle θ. The symmetry of
the sphere clearly implies that this area is directly proportional
to θ. Since the whole unit sphere has area 4π we conclude that

the area of a lune with polar angle θ is 2θ.
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12. Let’s look now at a spherical triangle with angles α, β, γ:

α β

γ

Extending its sides we obtain various lunes which intersect in
a congruent antipodal triangle (indicated by ‘open’ vertices).
Let L be the area of the triangle. Observing how the various
lunes cover the sphere, we get

4π = 2(2α + 2β + 2γ)− 4L,

so that

the area of a spherical triangle with angles α, β, γ is
α + β + γ − π,

(the angular excess).

13. Let’s return to our fundamental region K, which is a spherical
n-gon (n > 2) with angles of the form π

p1
, π
p2
, . . . , π

pn
, where

we have seen each integer pj > 2. Now subdivide K into n− 2
spherical triangles and employ the angular excess. We conclude
that

K has area π[ 1
p1

+ · · ·+ 1
pn
− (n− 2)].

But this area is positive. On the other hand, each 1
pj

6 1
2
, so

that
0 <

n

2
− (n− 2) .
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We conclude that n = 2 or 3. This immediately leads to an
easy enumeration of cases, as well as a formula for the orders of
the resulting reflection groups. We may include the degenerate
case n = 1 for completeness.

14.

Theorem 0.2. Let G be a finite reflection group in ordinary
Euclidean space. Then G belongs to one of the following classes:

(a) G = 〈r1〉 is generated by one reflection and has order 2. In
this case K is a hemisphere.

(b) G = 〈r1, r2〉 is a dihedral group Dp for some p > 2. Here G
has order 2p and K is a lune bounded by semicircles with
polar angle π/p.

(c) G = 〈r1, r2, r3〉 is generated by three reflections whose mir-
rors bound a spherical triangle K. The actual cases are

• (p1, p2, p3) = (2, 2, p) for any integer p > 2. Here G
has order 4p and can serve as the symmetry group of
of a uniform p-gonal right prism.

• (p1, p2, p3) = (2, 3, 3). Here G has order 24, is iso-
morphic to the symmetric group S4 and serves as the
symmetry group of the regular tetrahedron {3, 3}.
• (p1, p2, p3) = (2, 3, 4). Here G has order 48 and can

serve as the symmetry group of the cube {4, 3} or reg-
ular octahedron {3, 4}. (Here G ' S4 × C2.)

• (p1, p2, p3) = (2, 3, 5). Here G has order 120 and can
serve as the symmetry group of the regular dodecahe-
dron {5, 3} or regular icosahedron {3, 5}. (G is not
isomorphic to S5; instead G ' A5 × C2.)

We note that the order of the symmetry group [p, q] for the
regular polyhedron {p, q} is

4
1
p

+ 1
q
− 1

2

=
8pq

4− (p− 2)(q − 2)
.
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The Abstract Cube

1. The relation between the cube P and its symmetry group G
is quite typical of what happens for general regular polyhedra
(regular polytopes of rank n = 3). The extension to regular
polytopes of higher rank (n > 4) or even to lower ranks (eg.
polygons, of rank n = 2) is quite natural. Therefore, instead
of proving general things, we will just use the cube to suggest
a believable description of the basic theory of abstract regular
polytopes.

2. The cube has Schläfli symbol {4, 3} (after Ludwig Schläfli, a
19th century Swiss geometer). Here the ‘4’ indicates that the
faces of P are squares (Schläfli symbol {4}); the 3 indicates
that 3 squares surround each vertex. More precisely, the vertex-
figure of a typical vertex like v below is the equilateral triangle
{3} formed by the three vertices adjacent to v. (Sketch it in
yourself.)

v

e

f

r
2

r
0

r
1

O

10



3. The group G = G(P) is known to have presentation

G = 〈r0, r1, r2 | r20 = r21 = r22 = (r0r1)
4 = (r1r2)

3 = (r0r2)
2 = 1〉 .

(You could check the order 48 by coset enumeration. In the
1930’s Coxeter used geometric arguments to solidify our un-
derstanding of these kinds of groups in all dimensions.) Notice
where the 4 and 3 appear. And recall that the period 2 means
that r0 commutes with r2.

A Coxeter group is a group presented in this way as having
generators rj of period 2 subject only to those further relations
which specify the periods of products of two distinct generators.

Thus, if there are n generators r0, r1, . . . , rn−1, we will have at

most

(
n
2

)
further defining relations.

Some such relation could be missing. This is an admission that
we allow the period to be ∞. For example, the rank 2 Coxeter
group

〈r0, r1 | r20 = r21 = 1〉
actually is infinite. The generators can be interpreted as reflec-
tions in distinct parallel lines in the plane. This gives the sym-
metry group of the infinite regular polygon {∞} whose vertices
are all points with integer coordinates on a line perpendicular
to the mirrors. Sketch this yourself, taking care to place the
mirrors for r0, r1 correctly.

4. The presentation for any Coxeter group can be encoded in a
most useful Coxeter diagram. The diagram for G above is

• 4 • 3 •

The three nodes correspond left-to-right to r0, r1, r2. You can
see how the ‘rotational’ periods are indicated by the branch
labels. Crucially, non-adjacent nodes correspond to commuting
reflections. This is a very useful trick.
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5. Let’s return to the picture of the cube:
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Now we want to understand how to extract the generating
reflections from the geometrical set-up. The first step is to
chooses a base flag, i.e. an incident [vertex, edge, square face]
triple. The flag [v, e, f ] is indicated. We may identify each
of these components by its centroid. As a result, we get the
isosceles right triangle whose vertices are v, the midpoint of e
and the centre of f . This triangle does look a bit like a flying
pennant.

There are 48 = 8 · 6 copies of the pennant on the surface of the
cube. We see once more why G has order 48.

If you now join these three points to the body centre O for the
cube itself, then you get the framework for an actual trihedral
kaleidoscope.

12



The generating reflections now arise in a systematic way:

• reflection r0 moves only the dim 0 component of the base
flag (move v, globally fix e, f as entities);

• reflection r1 moves only the dim 1 component of the base
flag (move e, globally fix v, f as entities);

• reflection r2 moves only the dim 2 component of the base
flag (move f , globally fix v, e as entities).

The base flag is moved by rj to the so-called j − adjacent flag.
Take a moment to find these three flags and shade in their
pennants.

Now extract the abstract...

6. In order to count ingredients of each rank, we might employ
stabilizers. Observe that

• the stabilizer of the rank 0 element in the base flag is

G0 = StabG(v) = 〈r1, r2〉

• the stabilizer of the rank 1 element in the base flag is

G1 = StabG(e) = 〈r0, r2〉

• the stabilizer of the rank 2 element in the base flag is

G2 = StabG(f) = 〈r0, r1〉

In brief, the stabilizer of the rank j element in the base flag is

Gj = 〈ri : i 6= j, 0 6 i 6 n− 1〉,

where n = 3 for the cube, of course. The same description
works for regular polytopes of any rank.

In any regular polytope P , the symmetry group G = G(P) will
be transitive of ‘faces’ of each particular rank j: there is just
one orbit for each. Thus the number of j-faces in P equals

|G|
|Gj|

.
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7. Now recall how one proves this. We exhibit a 1− 1 correspon-
dence between j-faces and right cosets of the stabilizer in G.
If x denotes the j-face in the base flag, then as g runs through
G, we have

xg ↔ Gjg

From an abstract point of view: j-faces are the cosets Gjg.

8. We have the ingredients of P . What about assembly instruc-
tions? In other words, can we use the cosets to say when some
j-face ‘lies on’ or ‘is incident with’ some k-face?

Again we look at the cube to see what must happen. For in-
stance, when does a vertex (face of rank k = 0) lie on a square
(face of rank j = 2)?

Well, a typical vertex is vg and a typical square face is fh,
where g, h ∈ G. Note that g and h might well be different, but
due to transititity, this does cover all cases.

Working in one direction, let us assume that vertex vg lies on
square fh. Since h−1 is a symmetry in G, this means

(vg)h
−1

= v(gh
−1) lies on the base square f = f 1 = f (hh−1).

Now we appeal in an inductive way to our knowledge of lower-
rank objects, in this case, the square f whose own symmetry
group is isomorphic to G2 = 〈r0, r1〉. There must be some y ∈
G2 such that v(gh

−1) = vy. This in turn implies that gh−1y−1

fixes v, so that gh−1y−1 ∈ G0 = 〈r1, r2〉. Thus

G0(gh
−1y−1) = G0

G0g = G0(yh)

At the same time, since y ∈ G2, we have G2y = G2, so that
G2h = G2(yh). This shows that G0g and G2h have a common
representative yh:

yh ∈ G0g ∩G2h .
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The converse implication is easier. If we assume that Gkg∩Gjh
is non-empty, then say z ∈ Gkg ∩Gjh. In other words, z = xg,
where x fixes v and z = yh, where y fixes f .

Back in the base flag v is incident with f , so that if we apply z
we conclude that vertex vz = v(xg) = vg is incident with square
f z = f (yh) = fh.

From an abstract point of view: If k 6 j, the k-face Gkg
is incident with the j-face Gjh if and only if

Gkg ∩Gjh 6= ∅ .

9. We have seen how to ‘reconstruct’ the cube, at least in combina-
torial essentials, purely from the point of view of its symmetry
group G.

Much the same sort of thing is possible for any abstract regular
n-polytope, so that many questions concerning polytopes can
be reconfigured as questions concerning a suitable group G.

What sort of groups are suitable? Schulte proved in the early
1980’s that the regular n-polytopes correspond in a precise way
to string C-groups G. Such a group has these properties:

• it is generated by n specified elements r0, . . . , rn−1 each of
period 2. (The subscripts emphasize that the ordering of
these generators is important.)

• these elements satisfy certain relations

– (rkrj)
2 = 1, if k < j − 1 (indicating commuting gener-

ators).

– (rj−1rj)
pj = 1, for 1 6 j 6 n − 1 (think ‘rotational

periods’). Here each pj ∈ {2, 3, 4, . . . ,∞}.
Remarks. We may well need other relations of a type
not listed above to effect a presentation. But if no other
relations are needed, then the special sort of group that
results is called a Coxeter group with string diagram. The
diagram is a simple left to right string of nodes. If pj > 2,
then there is branch labelled pj connecting the (j − 1)st
node to the jth node.

The Schläfli symbol for the group (and polytope) is {p1, . . . , pn−1}.
We are not yet done with special properties for G. . .
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The group must also satisfy an

• intersection condition: for any subsets I, J ⊆ {0, 1, . . . , n−
1}, we have

〈rk : k ∈ I〉 ∩ 〈rk : k ∈ J〉 = 〈rk : k ∈ I ∩ J〉 .

Example. Many of these intersections hold for trivial rea-
sons. In the case of an abstract regular polyhedron (rank
n = 3), the crucial condition to be checked is

〈r0, r1〉 ∩ 〈r1, r2〉 = 〈r1〉 .

The direction ⊇ holds for sure. So what we really have to
show is ⊆, namely

g ∈ 〈r0, r1〉 ∩ 〈r1, r2〉 ⇒ g ∈ 〈r1〉 .

Remark. It turns out that Coxeter groups do satisfy the in-
tersection condition. This is tricky to prove. In other words,
it is the unstated ‘extra’ relations that can befoul the intersec-
tion condition. Much of one’s time in regular polytope theory
is spent dealing with this fact.
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