
Euclidean Space and its Isometry Group
Barry Monson – U. N. B.

A. Introduction and References.

There are numerous sources which cover the material below. Many of the prob-
lems concerning regular polygons and polyhedra are substantially adapted from the
beautiful treatment in

[1] H. S. M Coxeter, Regular Complex Polytopes, Cambridge University Press,
Cambridge, 1991, chapters 1–3.

For a different development of the isometry groups and regular polyhedra in var-
ious spaces, consult

[2] L. Fejes-Toth, Regular Figures, Pergammon, New York, 1964.

For an accessible and wide ranging treatment of spaces with constant curvature
and their groups see

[3] J. Ratcliffe, Foundations of Hyperbolic Manifolds, Graduate Texts in Mathe-
matics, 91, Springer-Verlag, New York, 1994.

We shall mostly work in d-dimensional Euclidean space E
d , though sometimes

we need spherical space S
d (the unit sphere in E

d+1) , or even hyperbolic space H
d .

Although we shall often use purely geometric arguments, particularly in the plane
E

2 or in ordinary space E
3 , it is still useful to review some analytic methods below.



B. Euclidean Spaces

We may define E
d as a d-dimensional real vector space, equipped with an inner

product x · y (i.e. positive definite symmetric bilinear form). The norm of x ∈ E
d

is ‖x‖ = (x · x)1/2.

1. Verify the Cauchy-Schwartz inequality for x, y ∈ E
d:

| x · y | ≤ ‖x‖ ‖y‖ .

Characterize the case of equality.

2. Show that (Ed, ‖ · ‖) is a normed linear space.

We thus have a metric on E
d: the distance from x to y is ‖x − y‖.

3. Verify that E
d is then a metric space.

4. Check that R
d , the space of 1 × d row vectors, equipped with the standard

inner product x · y := xyt is a Euclidean d-space.

**************

Occasionally it will do to consider E
d as a linear space with origin o, say. At

other times, we require the natural affine structure on E
d . If x, y ∈ E

d , the
(closed) line segment joining x to y is

[x, y] = {(1 − λ)x + λy : λ ∈ R, 0 ≤ λ ≤ 1}

Likewise, the line joining x and y is

←→

xy= {(1 − λ)x + λy : λ ∈ R} .

5. For u ∈ E
d, u ∈ [x, y] if-f

‖x − u‖ + ‖u − y‖ = ‖x − y‖ .

We allow x = y , in which case the segment or ‘line’ actually degenerates to a
single point.

If x1, ..., xr ∈ E
d , λ1, ...λr ∈ R , then

x = λ1x1 + ... + λrxr

is

• a linear combination of x1, ..., xr in any case;
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• an affine combination, if also λ1 + ... + λr = 1

• a convex combination, if furthermore all λj ≥ 0 .

A subset U ⊆ E
d is a linear (resp affine) subspace if it is closed under

arbitrary linear (resp. affine) combinations of its elements. Similarly, U is a
convex subset of E

d if closed under arbitrary convex combinations.

If U, W ⊆ E
d and λ ∈ R, then we define

U + W := {u + w : u ∈ U, w ∈ W}

U − W := {u − w : u ∈ U, w ∈ W}

λU = {λu : u ∈ U} .

In particular, if a ∈ E
d we let

U + a := U + {a} .

6. For U, W, Z ⊆ E
d , λ, η ∈ R

(U + W ) + Z = U + (W + Z) ,

λ(U + W ) = λU + λW .

When does (λ + η)U = λU + ηU ?

7. Show that U is a linear subspace of E
d

if-f U is closed under the linear operations induced from E
d.

if-f U + λU ⊆ U , ∀λ ∈ R.

8. Show that U is an affine subspace of E
d

if-f
←→

xy⊆ U for all x, y ∈ U (i.e. U is ‘line closed’)
if-f U is the translate L + a of a linear subspace L ⊆ E

d.

9. Consider the affine subspace U ⊆ E
d , and suppose U = L + a for linear

subspace L.

• Show that L is uniquely determined by U .

• Show that L = U − U .

• If b ∈ U , show that U = L + b .

• Show that two translates of L are either identical or disjoint.

We say naturally enough that two translates of L are parallel. More generally,
affine spaces U, W are parallel if one of the direction spaces U −U , W −W
is a subspace of the other.

3



10. Suppose U is an affine subspace and b ∈ U . For λ ∈ R , define

λ ∗ U := unique translate of U passing through λb .

Show that this definition is independent of b and that

λ ∗ U = λb + (U − U) = (λ − 1)b + U .

Show that λ ∗ U = λU if λ 6= 0. However,

0 ∗ U = U − U .

(P. McMullen has used this useful convention in describing realizations of apeiro-
hedra.)

11. A subset U ⊆ E
d is convex if-f it contains the line segment [x, y] for all x, y ∈

U .

12. The intersection of any family of linear subspaces is a linear subspace; ditto for
affine subspaces, convex subsets.

For any subset X ⊆ E
d , we may define linear hull linX to be the intersection

of all linear subspaces containing X . The affine hull aff X and convex hull

conv X are similarly defined.

13. For any X , linX is a linear subspace; aff X is an affine subspace; convX is a
convex set.

14. Prove that linX equals the set of all linear combinations of elements of X .
Prove analogous statements for affX and convX .

15. Prove

lin(linX) = linX

aff(affX) = affX

conv(convX) = convX

aff(convX) = affX

The convex hull of a finite set X in E
d is called a convex polytope.

**************

We now discuss dimension. A subset X ⊆ E
d is linearly dependent if there

exist x1, ..., xr ∈ X and λ1, ..., λr ∈ R , not all 0, such that

o = λ1x1 + ... + λxr .

If also λ1 + ... + λr = 0 , we say X is affinely dependent. If this does not
happen, then the set X is linearly (resp. affinely) independent.
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16. X is affinely dependent

• if-f X + a is affinely dependent, for any a ∈ E
d.

• if-f some x ∈ X is an affine combination of other xj ∈ X.

17. Let xj = (ξj1, ...ξjd) , for 0 ≤ j ≤ r.
Then {x0, ..., xr} is affinely dependent

• if-f {x1 − x0, ..., xr − x0} is linearly dependent.

• if-f the matrix










1 ξ01 ... ξ0d

1 ξ11 ... ξ1d
...
1 ξr1 ... ξrd











has rank less than r + 1.

**************

Now let U be any affine subspace of E
d and let L (= U − U) be its (unique)

linear direction space. Thus U = L + a , for any a ∈ U . Let r = dim(L).

18. Every affinely independent subset of U is contained in some maximal affinely
independent subset B . Each such B has r + 1 elements and U = aff(B) ;
furthermore, every x ∈ U is uniquely expressible as an affine combination of
elements of B .

Accordingly, the set B = {b0, b1, ..., br} in the previous problem is called an
affine basis for U , and we say that dim(U) = r.

19. Interpret this in the case that {b0, b1, b2} are the vertices of a triangle in the
plane E

2 (here U equals all of E
2). Show that each x ∈ E

2 can be uniquely
expressed as

x = λ0b0 + λ1b1 + λ2b2 ,

where λj ∈ R and λ0 + λ1 + λ2 = 1 .

Find a geometric meaning for the affine coordinates λj . Describe each vertex,
edge and supporting line of the triangle using these affine coordinates. The
three supporting lines divide the plane into 7 regions. Characterize each in
terms of affine coordinates.

20. Show that {x0, ..., xr} is an affine basis for U = L+a if-f {x1−x0, ..., xr −x0}
is a (linear) basis for L = U − U .
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21. If U = aff(X) , we can choose an affine basis for U from X .

**************

Let L be any r-dimensional linear subspace of E
d. Recall that we can extend

any basis for L to one for E
d , and further use the Gram-Schmidt process

to produce an orthonormal basis {e1, ..., ed} for E
d , where {e1, ...er} is an

orthonormal basis for L . The orthogonal complement of L is the (d −
r)−dimensional linear space L⊥ spanned by {er+1, ..., ed}. Thus E

d = L⊕L⊥.

22. Show that

L⊥ = {x ∈ E
d : x · u = 0, ∀u ∈ L} .

(Thus L⊥ can be defined independently of the basis used above.)

23. Suppose L, M are linear subspaces of E
d. Show that

(a) L ⊆ M =⇒ M⊥ ⊆ L⊥.

(b) (L⊥)⊥ = L

(c) L + M and L ∩ M are linear subspaces of E
d.

(d) (L + M)⊥ = L⊥ ∩ M⊥.

(e) (L ∩ M)⊥ = L⊥ + M⊥.

24. (a) Give a sensible definition for an orthogonal complement to an affine sub-
space L.

(b) Given any affine subspace L and point x ∈ E
d , show that there exists a

unique affine subspace M through x and orthogonal to L .

25. Let L be a subset of E
d.

(a) Show that L is a 0-dimensional affine subspace of E
d if-f L = {x} for

some x ∈ E
d. (We often simply write L = x.)

(b) Show that L is a 1-dimensional affine subspace if-f L =
←→

xy (a line, with
x 6= y).

**************

A (d − 1)−dimensional (affine) subspace H is called a hyperplane.
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26. Show that any hyperplane H is defined by a linear equation

x · n = k

for some non-zero normal vector n . Indeed, show that any line of the form
L = Rn + c is completely orthogonal to H.

27. Compute the (shortest) distance from the point y to (a point on) the hyperplane
x · n = k.

28. Suppose b, c are distinct points in E
d. Let

H = {x ∈ E
d : ‖x − b‖ = ‖x − c‖}

(i.e. the set of all points equidistant from b, c).

Show that H is a hyperplane which passes through the midpoint of [b, c] and

which is orthogonal to the line
←→

bc . Give an equation for H .

**************

Let X = {b0, b1, ..., br} be an affinely independent subset of E
d. The polytope

conv(X) is called an r-simplex. (We allow r < d: think of a segment or triangle
in space E

d.)

29. Prove that a 1-simplex is a (proper) segment, and that a 2-simplex is a triangle.

30. Show that a d-simplex in E
d is not contained in any hyperplane H.

31. Let {b0, b1, ..., bd} be an affine basis for E
d. Suppose ‖x − bj‖ = ‖y − bj‖ for

0 ≤ j ≤ d. Show that x = y. (See problem 28.)
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C. Isometries on E
d.

An isometry on E
d is any distance preserving map

S : E
d → E

d

‖x − y‖ = ‖xS − yS‖ , ∀x, y ∈ E
d .

(Note that we shall normally write mappings on the right of their arguments:
xS := (x)S , rather than S(x).)

It is easy to check that the identity map I : E
d → E

d is an isometry.

32. (a) Show that any isometry is 1 − 1.

(b) We shall show below that isometries are onto, hence invertible. Try to
prove this now. (See problem 1.)

33. (a) For each fixed vector a ∈ E
d , the translation

Ta : x 7→ x + a

is an isometry.

(b) For which a does Ta = I?

(c) The central inversion

Z : x → −x , ∀x ∈ E
d

is an isometry.

(d) Any product (i.e. composition) of isometries is an isometry.

(e) Identify the isometry T−aZTa.

**************

We need to manufacture a richer supply of isometries.

34. Formulate a reasonable geometric definition for reflection in a hyperplane H .
Verify that the following analytic definition meets your requirements.

Let H be the hyperplane x ·n = k , with normal vector n . Then the reflection

R in H is defined by

R : x 7→ x −
2

n · n
(x · n − k)n

In particular, if o ∈ H , then k = 0 and

R : x → x − 2
x · n

n · n
n .

35.
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(a) Verify that R is an isometry.

(b) Show that R fixes each point of H and interchanges the two half-spaces
into which H decomposes E

d.

(c) Show that R2 = I . Thus R is invertible and R = R−1.

(d) If k = 0 , then R fixes the origin o and considered as a linear map has
det(R) = −1.

(e) If x 6∈ H , then H is the perpendicular bisector of the segment [x, xR].
(See problem 28.)

(f) For any x0, y0 ∈ E
d , there exists a reflection mapping x0 7→ y0 (unique if

x0 6= y0).

36. Suppose ‖x0−x1‖ = ‖y0−y1‖. Then there is a product of at most 2 reflections
which maps both x0 → y0 and x1 → y1.

37. Suppose X = {x0, ..., xr} and Y = {y0, ..., yr} are affinely independent subsets
of E

d with ‖xi−xj‖ = ‖yi−yj‖ for all 0 ≤ i, j ≤ r. Then there is an isometry
S , in fact a product of at most r + 1 reflections, which maps each xj to yj ,
0 ≤ j ≤ r.

38. Suppose that an isometry S fixes each element of an affine basis B = {b0, b1, ...bd}
for E

d :

bjS = bj , 0 ≤ j ≤ d .

Then S = I. (Hint: see problem 31.)

39. (a) Every isometry S on E
d is a product of at most d + 1 reflections.

(b) If B = {b0, ..., bd} and C = {c0, ..., cd} are congruent affine bases for E
d ,

i.e. if ‖bi − bj‖ = ‖ci − cj‖ for 0 ≤ i, j ≤ d , then there exists a unique
isometry S mapping each bj → cj.

**************

We now know that all isometries are invertible mappings on E
d and in fact

constitute a group, which we denote Id.

The next result asserts that a ‘local’ isometry always extends to a ‘global’
isometry.

40. Let X = {xj : j ∈ J} and Y = {yj : j ∈ J} be two subsets of E
d , such that

‖xj − xk‖ = ‖yj − yk‖ , for all j, k ∈ J . Then there is an isometry S on E
d

such that xjS = yj , ∀j ∈ J . Moreover S is unique if aff(X) = E
d.

(Hints: (a) Show that with no loss of generality we may assume aff(X) ⊆ aff(Y ).
(b)Suppose {x0, ..., xm} and {y0, ..., ym} are affinely independent; then as in
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problem 37 we may assume xj = yj, for 0 ≤ j ≤ m. Hence show that xm+1 6∈
aff{x0, ..., xm} but with ym+1 ∈ aff{y0, ...ym} would contradict problem 31.
(c)Show that aff(X) = aff(Y ) and use problem 31 again.)

41. (a) If R is reflection in the hyperplane x ·n = k , and S is any isometry, then
S−1RS is also a reflection. Identify its (hyperplane) mirror.

(b) Show that reflections R1, R2 commute if-f the corresponding normals are
orthogonal: n1 · n2 = 0.

42. If the isometry T maps o to b, then isometry S fixes o if-f T−1ST fixes b.

An isometry which fixes some point b is called an orthogonal transformation.
Clearly, the collection of all isometries fixing b is a group, which by the previous
problem is isomorphic, indeed conjugate to, the orthogonal group

Od = {S ∈ Id : oS = o} .

43. Each S ∈ Od is a product of at most d reflections. (Hint: see problem 1; the
first of the d + 1 possible reflections is superfluous, since oS = o .)

Consider an isometry S ∈ Id , with oS = b , say. Applying the translation T−b

we find

ST−b =: B ∈ Od .

Thus any isometry
S : x 7−→ xB + b ,

can be viewed as the product of an orthogonal transformation (fixing the origin)
and a translation.

44. Suppose S : x → xB + b

U : x → xC + c ,

are two such isometries.

(a) Show that B ∈ Od and b ∈ E
d are uniquely determined by S.

(b) Compute the unique orthogonal transformation and translation component
for S−1 and for SU .

45. Show that

Id ≃ Od ⋉ R
d

(a semi-direct product).
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46. Show that every isometry S on R
d can be (uniquely) written as

S : x → xB + b

where b ∈ R
d and B is an orthogonal d × d matrix (i.e. BBt = I).

Notice that we may consider Od to be a linear group (i.e. subgroup of GL(Ed)).
We shall say S : x → xB + b is direct (sense-preserving) if det(B) = +1 , or
opposite (sense-reversing) if det(B) = −1.
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47. (a) The isometry S ∈ Id is direct (resp. opposite) if-f it is a product of an
even (resp. odd) number of reflections. (See problem 1.)

(b) Show that the direct isometries constitute a subgroup ofindex 2 in Id.

**************

An isometry S with period 2 is called an involution (and is said to be invo-
lutary). Thus S2 = I but S 6= I . Examples include the central inversion Z
(in o) and all reflections R .

48. Suppose S is an involutory isometry.

(a) For any a ∈ E
d , S fixes the midpoint b of the segment [a, aS].

(b) If b is the only fixed point of S then S = T−bZTb , i.e. the central
inversion
in b .

(c) The central inversion Z (at the origin o) is a product of reflections in d
mutually perpendicular hyperplanes through o.

(d) Some conjugate of the involutary isometry S fixes o.

49. Let S be an involutory isometry.

(a) The fixed space F = {x ∈ E
d : xS = x} is an S-invariant affine subspace

of E
d.

(b) Let b ∈ F , which we suppose has dimension d−r. Then the subspace M
through b , completely orthogonal to F , is an S-invariant r-dimensional
subspace.

(c) S induces a central inversion on M .

(d) S is a product of reflections in r mutully perpendicular hyperplanes. (See
problem 48 (c).)

**************

Let us investigate now products of two reflections , say

R1 in the hyperplane H1 : x · n1 = k1 ,
R2 in the hyperplane H2 : x · n2 = k2 .

50. Recall that the above hyperplanes H1 and H2 are parallel if-f one is a translate
of the other (problem 9).

(a) Show that H1 is parallel to H2 if-f the normals n1, n2 are linearly depen-
dent.
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(b) If H1 is parallel to H2 , show that R1R2 is a translation. The distance of
the translation is twice the distance between the mirrors.

(c) Conversely, if Tb is any translation, show that Tb = R1R2 is product of two
reflections, in hyperplanes orthogonal to b. Given the latter requirement,
show that either of R1 or R2 can be chosen arbitrarily.

51. Let R1, R2 be reflections in lines (i.e. ‘hyperplanes’) in E
2, both passing

through o.

If α is the angle from the first to second mirror, show that R1R2 is a rotation
through 2α, with centre o.

Because of this last problem, we say that the product of reflections R1, R2 in
two intersecting hyperplanes H1, H2 is a rotation. The fixed space H1 ∩ H2

is called the axis of rotation.

52. Suppose H1 and H2 are distinct, intersecting hyperplanes.

(a) Show that F = H1 ∩ H2 is a (d − 2)−dimensional affine subspace fixed
by S = R1R2.

(b) Let L = lin{n1, n2} be the linear subspace spanned by the normals. Show
that L is two dimensional.

(c) Let b ∈ F . Show that M := L + b is a plane completely orthogonal to F
at b . Show that H1, H2 meet M in lines inclined at an angle α satisfying

cos α =
n1 · n2

‖n1‖ ‖n2‖
.

(d) Show that each plane M is S-invariant and that S acts on M as a
rotation through 2α.

(e) If S is a rotation with (d − 2)-dimensional axis F and angle 2α , show
that S = R1R2 , a product of reflections in hyperplanes H1, H2 inclined
at angle α , and with H1 ∩ H2 = F . Given this, show that either of H1

or H2 can be chosen arbitrarily.

The product of reflections in perpendicular mirrors is an involutory rotation,
i.e. a half-turn. A glide refection, or just glide, is the product G = RT
of a reflection R with a translation T whose vector b is parallel to the mirror

H for R. (Thus if R is reflection in the hyperplane H described by x · n = k ,
then we in fact have n · b = 0. ).

53. Let G = RT be the glide described just above.

(a) If b = 0 , then the degenerate glide G = R is actually an ordinary reflec-
tion.

(b) Show that RT = TR.
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(c) Show that a proper glide, with b 6= o , has no fixed points.

(d) Show that G = SR′ , where S is a half-turn whose axis is parallel to the
mirror for the reflection R′. Given these requirements, R′ can be replaced
by reflection in any parallel mirror, adjusting the half-turn accordingly.

54. Any product RT of a reflection and translation is a glide. (Hint: resolve the
vector a = a1 + a2 for T into components a1 orthogonal to and a2 parallel to
the mirror for R. Apply problem 50(c) to Ta1

and Ta2
. )
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D. Isometries in the plane E
2 and space E

3 - first approach

Here we shall classify all isometires in E
2 or E

3 in a routine, but self-contained,
way. For a more insightful approach, particularly useful in classifying the regular
polygons in ordinary space, see the next section (and chapter 1 of [1]). Refer
to problems 43 and 47, concerning the orthogonal group Od , i.e. isometries in
E

d which fix the origin o .

55. (a) Show that every orthogonal transformation the plane E
2 is either a reflec-

tion or rotation.

(b) Show that the orthogonal rotations in E
2 form an abelian group SO(2)

isomorphic to R/Z .

56. (a) (Euler) Every direct orthogonal transfunction in E
3 is a rotation.

(b) Show that SO(3) , the group of rotations fixing o in E
3 , is non-abelian.

(c) Suppose that a rotation in SO(3) is represented by an orthogonal matrix
B . Show how to compute the rotation angle from trace(B).

Consider now a product P = R1R2R3 of three reflections in E
2 or E

3 . Suppose
(o)P−1 = b and let R0 be reflection in the perpendicular bisector of [o, b]. (If
o = b , take any mirror through o .) By problems 55(a) and 56(a), the direct
isometry R0P fixes o and so is a rotation, which can be factored as a product
R′R of two reflections in mirrors through o . In fact, we can freely choose R′

and R to have perpendicular mirrors. Thus

R0P = R′R

P = (R0R
′)R = SR,

the product of a half-turn S and reflection R.

57. In E
2 , the product of three reflections is always a glide, perhaps degenerating

to a reflection (see problem 53(c).)

58. Theorem.

(a) In the plane E
2 , every isometry is either a reflection, rotation, translation

or glide.

(b) Every isometry in E
2 is the product of two involutory isometries.

Consider again P = SR above. In E
3 , the axis for the half-turn S is a line L

(which may or may not intersect the mirror H for R. In any case, S = R4R5 ,
a product of reflections in orthogonal mirrors H4, H5 , where we may freely
choose H5 ⊥ H. Thus

P = R5U = UR5
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where U = R4R is either a translation, when L is parallel to H , or a rotation
with axis M ⊥ H5 , when L meets H .

In the latter case, P is called a rotatory reflection, i.e. the product of a
rotation and reflection, whose mirror is perpendicular to the axis of rotation.

59. Explain why the central inversion is a rotatory reflection.

60. Summarize the above discussion: in E
3 every product of three reflections is

either what or what?

A product P = R1R2R3R4 of four reflections can be similarly analyzed. Let
(o)P = b , so P ′ = PT−b is a direct isometry fixing o , namely a rotation S with
axis L. Suppose b = b1 + b2 , where b2 ∈ L and b1 · b2 = 0. Thus Tb1 = R6R7 ,
where R6, R7 are suitable reflections, whose mirrors are orthogonal to b1 , and
where the mirror for R6 contains L . But then S = R5R6 for a suitable
reflection R5. In short,

P = STb

= STb1Tb2

= R5R6R6R7Tb2

= (R5R7)Tb2

= S ′Tb2 ,

the product of a rotation S ′ whose axis L′ is parallel to the vector b2 for the
translation Tb2 . Such a direct isometry is called a screw (or screw displace-

ment).

61. Theorem.

(a) Every isometry in E
3 is a reflection, rotation, translation, glide, rotatory-

reflection or screw.

(b) Every isometry in E
3 is a product of two involutory isometries.
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E. Isometries in the plane E
2 and space E

3 - a second approach using

regular polygons

A by-product of the classification of isometries in E
2 and E

3 (see problems 58
and 61 in the previous section) is the observation that each such isometry is the
product of two involutary isometries. In fact, this is true in general and can be
proved with a careful analysis of the eigenspaces of a general orthogonal matrix,
without first having a full classification of the various isometries (see [1, page
3]).

Theorem. In E
d, with d ≥ 2, each isometry can be expressed as a product of

two involutary isometries.

62. Find a proof for this theorem.

In [1, ch. 1] Coxeter uses this theorem as a starting point for a clssification of
isometries which is keyed to the notion of a regular polygon.

We define a polygon P in E
d to be a sequence of points or vertices

. . . , a−1, a0, a1, a2, . . .

joined in successive pairs by the segments or edges

. . . , [a−1, a0], [a0, a1], [a1, a2], . . .

(say ej := [aj , aj+1]).

This list of vertices could be finite, say a0, a1, . . . , ap−1, in which case we take
subscripts to be residues (mod p). Thus when there are p distinct vertices,
we obtain a p-gon with edges e0 = [a0, a1], e1 = [a1, a2], ending with the return
edge ep−1 = [ap−1, a0]. On the other hand, if the aj’s are distinct for all j ∈ Z,
we obtain the (infinite) apeirogon {∞} .

Naturally, we agree that the dimension of P is determined by the dimension
of the affine hull of the vertex set. Thus a polygon is linear if it sits inside a
line, planar if in a plane, and skew otherwise.

We say that P is regular if for some isometry S we have

aj = a0S
j , ∀j ∈ Z .

Hence P is regular if there is an isometry which induces the cyclic permutation

(. . . , a−1, a0, a1, a2, . . .)

(on the vertex set).

63. Typically one also demands that the base vertex a0 not be fixed by S. Why?
What is p in this case?
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64. Describe the possible regular p-gons when S is an involution.

65. Suppose P is the regular polygon generated by the isometry S. Prove that
there are involutary isometries R0, R1 which induce the following permutations
on the vertex set:

R0 : . . . (a0, a−1)(a1, a−2)(a2, a−3) . . .

R1 : . . . (a1, a−1)(a2, a−2)(a3, a−3) . . .

(Hint: use problem 40).

More precisely, show that S = R0R1, at least on the affine hull of the vertex
set, and that R1 fixes the base vertex a0.

66. Why does the previous problem not quite solve problem 62 ? Perhaps one can
enhance this approach to produce a complete proof.

67. [1, page 4] Show that P is regular if and only if for each positive integer k we
have

‖a0 − ak‖ = ‖a1 − ak+1‖ = ‖a2 − ak+2‖ = . . . .

68. [1, page 4] A pentagon is regular if and only if it is equilateral and equiangular.

69. [1, page 4] A polygon is regular if and only if its edges are all equal and its
angles of each kind are all equal (Schoute, 1902). For example, a skew polygon
in E

3 has two kinds of angles: the usual angle aj−1ajaj+1 at a vertex, and a
dihedral angle aj−1(ajaj+1)aj+2 at an edge ej.

70. [1, page 4] Describe a regular skew pentagon in E
4.

**************

Since the isometry S used above is quite general, we observe that the classifica-
tions of isometries and regular polygons, say in E

2 and E
3, go hand in hand and

can be achieved by examining all posssible pairs of involutions R0, R1. More-
over, we deduce from problem 49 that any involutary isometry is determined
by its fixed space F , and so is classified merely by the dimension of this fixed
space.

The actual possibilities for a regular polygon P in E
2 or E

3 now fall out quite
neatly. We summarize the discussion in [1, §1.6 – 1.8] by a sequence of problems:

71. Suppose R1 is central inversion.

(a) Show that edges e0 = [a0, a1] and e−1 = [a−1, a0] are collinear.

(b) Show that P is the one dimensional apeirogon {∞}, consisting of infinitely
many equally spaced points on a line, joined consecutively. Thus P is linear.

(c) Show that R0, R1 act on this line by reflection ( = central inversion!), and
S by translation.
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72. Suppose R0 is either reflection or central inversion.

(a) Show that the planes a0a−1a−2 and a−1a0a1 coincide, so that P must be
planar.
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Hence we may

• assume that R0 is a reflection or half-turn in this plane

• assume that R1 is a reflection in this plane (else R1 is a half-turn = central
inversion, and we are returned to the case in problem 71)

• assume further that if R0 is a reflection, then the mirrors for R0, R1 in-
tersect, say at o (the case of parallel mirrors returns us again to problem
71)

(b) So assume that R0, R1 are reflections whose mirrors intersect at o, and
let α := ∠a−1 o a0. Describe P when α is incommensurable with π. When
α = 2dπ/p, for coprime integers d and p, we obtain a p-gon of density d inscribed
in a circle. We denote this finite regular polygon by {p/d}. If p < 2d, we usually
write {p/(p − d)} instead: thus {3/2} really describes an equilateral triangle.

When is {p/d} convex?

(c) The final planar case has R0 a half-turn and and R1 a reflection, so that S
is a glide: see problem 53(d). Show that P is an infinite regular zig-zag, an-
other realization of the combinatorial polygon {∞}. When does this realization
‘degenerate’ into the linear apeirogon?

The above analysis covers all possibilities in the plane E
2. The remaining pos-

sibilities in space E
3 have R0 a half-turn and R1 either a reflection or half-turn.

73. Suppose that R0 is a half-turn with axis L and R1 a reflection with mirror H
in E

3.

(a) Suppose L is parallel to H . Show that S = R0R1 is a glide (problem 53);
furthermore, any choice of a0 ∈ H again provides a zig-zag lying in the plane
through a0 orthogonal to H (so we return to problem 72(c)).

(b) Suppose L meets H , say at o. Then S = R0R1 is akin to a ‘spherical
glide’. In fact, S is a rotatory-reflection (see the discussion following problem
58). The polygon P is now a ‘spherical zig-zag’, whose vertices lie alternately
on two parallel ‘small’ circles. To see this another way, show that S = UR, the
product of a rotation U through angle α with reflection in a mirror orthogonal
to the axis of rotation.

If α = dπ/p, for coprime integers d, p, then S has period 2p. The polygon P is
a skew 2p-gon, whose alternate vertices are inscribed in the two small circles.
In fact, each set of alternate vertices gives a p-gon inscribed in its small circle.
Further description requires some care; it is natural to distinguish two subcases:

• If p is odd and d is even (still coprime), show that P is a prismatic

polygon, whose vertices are those of a right prism with base {p/(1

2
d)}, and

whose 2p edges are all lateral face diagonals of this prism.
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• In all other cases, P is an anti-prismatic polygon, whose vertices are
those of an antiprism with base {p/d}, and whose 2p edges are simply all
edges of this antiprism.
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74. Suppose that R0 is a half-turn with axis L0 and R1 another half-turn with axis
L1 in E

3.

(a) If L0 and L1 intersect or are parallel, the plane containing them is S-
invariant, so that P is again planar (or even linear).

(b) So suppose L0 and L1 are skew lines with unique common perpendicular line
M . Show that S is a screw with axis M (see the discussion preceding problem
61).

If a0 6∈ M , and L0 and L1 are not orthogonal, then P is skew and is inscribed
in a helix. Hence P is called a helical polygon. Such polygons come naturally
in chiral pairs (i.e. left- and right-handed versions).

75. [1, page 6] Every finite regular skew polygon in E
3 has an even number of

vertices.

76. [1, page 6] A skew pentagon in E
3 cannot be both equilateral and equiangular.

77. [1, page 6] Can a skew hexagon in E
3 be both equilateral and equiangular, but

not regular?
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F. Affine Irreducibility.

The upshot of the discussion around problem 44 is that every isometry S is an
affine isomorphism. Thus S maps any r-dimensional affine subspace to another
of the same dimension. In particular, if S maps L to some translate

(L)S = L + c ,

then S permutes the members of

L̂ := {L + x : x ∈ E
d} ,

the family of all translates of L . Considering the usual way of projectifying
E

d , we might say that S fixes an (r − 1)-space L̂ at infinity. In particular,
this happens if L is actually S-invariant.

78. If the isometry S maps the r-space L to a translate, then S maps any orthog-
onal (d − r)-space M to a translate. Thus L̂ being invariant implies that M̂
is invariant.

79. What is the space at infinity when L = {a} is a point?

80. How does any translation T act on the various spaces at infinity?

81. Suppose
S : x → xB + b ,

where B ∈ Od . (Thus B is an orthogonal transformation fixing o.) Then L̂
is S-invariant if–f its linear direction space L − L is B-invariant.

**************

In fact, suppose now that the linear subspaces L1, L2 are fixed orthogonal
complements at o, and let

π1 : E
d → L1

π2 : E
d → L2

be the corresponding (linear) orthogonal projections. (If we really must repre-
sent the situation when affine subspaces are orthogonal at a , then conjugate
appropriately by the translation Ta .)

82. Observe that

z = zπ1 + zπ2 , ∀z ∈ E
d .
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83. Suppose S ∈ Id is any isometry which maps L1 (likewise L2 ) to some trans-
late. Define a mapping Sj on Lj by

Sj : Lj → Lj

x → xSπj .

(a) Show that Sj is a well-defined isometry on Lj .

(b) Show that

zS = zπ1S1 + zπ2S2 , ∀z ∈ E
d .

(Thus S may be reconstituted in a natural way from the induced mappings
on L1 and L2 .)

As a temporary notation, denote the isometry group on Lj by I(Lj) .

84. Suppose Γ is a subgroup of Id which fixes L̂1 (hence also L̂2 ) for the above
orthogonal linear subspaces L1, L2 (i.e. each S ∈ Γ maps L1 to some trans-
late). Show that the maps

ϕj : Γ → I(Lj)

S → Sj

are group homomorphisms.
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