Reflection and Rotation groups in Ordinary Space

Barry Monson (UNB)
Summer School on Symmetries of Combinatorial Structures Cuernavaca, July, 2012

(supported in part by the NSERC of Canada)

Isometries in the Euclidean plane \mathbb{E}^{2}

In the plane \mathbb{E}^{2}, the product of reflections r_{1}, r_{2} (in intersecting lines) is

Isometries in the Euclidean plane \mathbb{E}^{2}

In the plane \mathbb{E}^{2}, the product of reflections r_{1}, r_{2} (in intersecting lines) is Note:

$r_{1} r_{2}=$ rotation through angle 2θ about centre A

Isometries in the Euclidean plane \mathbb{E}^{2}

In the plane \mathbb{E}^{2}, the product of reflections r_{1}, r_{2} (in intersecting lines) is Note:

- compose mappings left-to-right

$r_{1} r_{2}=$ rotation through angle 2θ about centre A

Isometries in the Euclidean plane \mathbb{E}^{2}

In the plane \mathbb{E}^{2}, the product of reflections r_{1}, r_{2} (in intersecting lines) is Note:

- compose mappings left-to-right
- the rotation $r_{1} r_{2}$ has finite period q if $\theta=\pi / q$, so usually period $=\infty$.
$r_{1} r_{2}=$ rotation through angle 2θ about centre A

Isometries in the Euclidean plane \mathbb{E}^{2}

In the plane \mathbb{E}^{2}, the product of reflections r_{1}, r_{2} (in intersecting lines) is Note:

- compose mappings left-to-right
- the rotation $r_{1} r_{2}$ has finite period q if $\theta=\pi / q$, so usually period $=\infty$.
- reflections reverse orientation; determinant $=-1$
$r_{1} r_{2}=$ rotation through angle 2θ about centre A

Isometries in the Euclidean plane \mathbb{E}^{2}

In the plane \mathbb{E}^{2}, the product of reflections r_{1}, r_{2} (in intersecting lines) is Note:

- compose mappings left-to-right
- the rotation $r_{1} r_{2}$ has finite period q if $\theta=\pi / q$, so usually period $=\infty$.
- reflections reverse orientation; determinant $=-1$
- rotations preserve orientation; determinant $=+1$
$r_{1} r_{2}=$ rotation through angle 2θ about centre A

Isometries in the Euclidean plane \mathbb{E}^{2}

In the plane \mathbb{E}^{2}, the product of reflections r_{1}, r_{2} (in intersecting lines) is Note:

- compose mappings left-to-right
- the rotation $r_{1} r_{2}$ has finite period q if $\theta=\pi / q$, so usually period $=\infty$.
- reflections reverse orientation; determinant $=-1$
- rotations preserve orientation; determinant $=+1$
- in space $\mathbb{E}^{3} r_{1} r_{2}$ is still a rotation (but now with a linear axis) Why?
$r_{1} r_{2}=$ rotation through angle 2θ about centre A

Isometries in the Euclidean plane \mathbb{E}^{2}

In the plane \mathbb{E}^{2}, the product of reflections r_{1}, r_{2} (in intersecting lines) is Note:

- compose mappings left-to-right
- the rotation $r_{1} r_{2}$ has finite period q if $\theta=\pi / q$, so usually period $=\infty$.
- reflections reverse orientation; determinant $=-1$
- rotations preserve orientation; determinant $=+1$
- in space $\mathbb{E}^{3} r_{1} r_{2}$ is still a rotation (but now with a linear axis) Why?
$r_{1} r_{2}=$ rotation through angle 2θ about centre A
- think of the action in a plane perpendicular to the two planar mirrors for r_{1} and r_{2}

From now on ...

mirrors in \mathbb{E}^{3} will intersect in some point O

Barry Monson (UNB), Summer School on Symmetries of Coml Reflection and Rotation groups in Ordinary Space

From now on ...

mirrors in \mathbb{E}^{3} will intersect in some point O so we can follow the action in a unit sphere \mathbb{S}^{2} centred at O.

From now on ...

mirrors in \mathbb{E}^{3} will intersect in some point O so we can follow the action in a unit sphere \mathbb{S}^{2} centred at O.

- mirrors become great circles

From now on ...

mirrors in \mathbb{E}^{3} will intersect in some point O so we can follow the action in a unit sphere \mathbb{S}^{2} centred at O.

- mirrors become great circles
- for sure $r_{1} r_{2}$ is a rotation through 2θ at centre A.

From now on ...

mirrors in \mathbb{E}^{3} will intersect in some point O so we can follow the action in a unit sphere \mathbb{S}^{2} centred at O.

- mirrors become great circles
- for sure $r_{1} r_{2}$ is a rotation through 2θ at centre A.
- but if we see angle θ from mirror 1 to mirror 2 at A (looking from outside the sphere)

From now on ...

mirrors in \mathbb{E}^{3} will intersect in some point O so we can follow the action in a unit sphere \mathbb{S}^{2} centred at O.

- mirrors become great circles
- for sure $r_{1} r_{2}$ is a rotation through 2θ at centre A.
- but if we see angle θ from mirror 1 to mirror 2 at A (looking from outside the sphere) then we see $-\theta$ at the antipode A^{\prime}

Reflection groups G

Let G be any finite group generated by reflections in \mathbb{E}^{3}.
Familiar examples: symmetry group G of a Platonic solid Algebraic Properties of G :

Reflection groups G

Let G be any finite group generated by reflections in \mathbb{E}^{3}.
Familiar examples: symmetry group G of a Platonic solid Algebraic Properties of G :

- the map

$$
\begin{aligned}
G & \rightarrow\{ \pm 1\} \\
g & \mapsto \operatorname{det}(g)
\end{aligned}
$$

is a homomorphism.

Reflection groups G

Let G be any finite group generated by reflections in \mathbb{E}^{3}.
Familiar examples: symmetry group G of a Platonic solid
Algebraic Properties of G :

- the map

$$
\begin{aligned}
G & \rightarrow\{ \pm 1\} \\
g & \mapsto \operatorname{det}(g)
\end{aligned}
$$

is a homomorphism.

- The kernel G^{+}contains all products of an even number of reflections. G^{+}has index 2 in G.

Reflection groups G

Let G be any finite group generated by reflections in \mathbb{E}^{3}.
Familiar examples: symmetry group G of a Platonic solid
Algebraic Properties of G :

- the map

$$
\begin{aligned}
G & \rightarrow\{ \pm 1\} \\
g & \mapsto \operatorname{det}(g)
\end{aligned}
$$

is a homomorphism.

- The kernel G^{+}contains all products of an even number of reflections. G^{+}has index 2 in G.
- In \mathbb{E}^{3} these kernel symmetries are all rotations, including identity 1 .

Reflection groups G

Let G be any finite group generated by reflections in \mathbb{E}^{3}.
Familiar examples: symmetry group G of a Platonic solid
Algebraic Properties of G :

- the map

$$
\begin{aligned}
G & \rightarrow\{ \pm 1\} \\
g & \mapsto \operatorname{det}(g)
\end{aligned}
$$

is a homomorphism.

- The kernel G^{+}contains all products of an even number of reflections. G^{+}has index 2 in G.
- In \mathbb{E}^{3} these kernel symmetries are all rotations, including identity 1.
- the other coset contains all reflections and usually other symmetries, namely rotatory reflections $=$ 'spherical glides'.

Geometric Properties of G :

- any point $P \in \mathbb{E}^{3}$ has a finite G-orbit

Geometric Properties of G :

- any point $P \in \mathbb{E}^{3}$ has a finite G-orbit
- but $O=$ centroid of that orbit is G-fixed.

Geometric Properties of G :

- any point $P \in \mathbb{E}^{3}$ has a finite G-orbit
- but $O=$ centroid of that orbit is G-fixed.
- so can use unit sphere \mathbb{S}^{2} centred at O

Geometric Properties of G :

- any point $P \in \mathbb{E}^{3}$ has a finite G-orbit
- but $O=$ centroid of that orbit is G-fixed.
- so can use unit sphere \mathbb{S}^{2} centred at O
- the mirrors of all reflections in G pass through O and subdivide \mathbb{E}^{3} into various 'conical regions' all sharing the apex O and each bounded by certain mirrors

Geometric Properties of G :

- any point $P \in \mathbb{E}^{3}$ has a finite G-orbit
- but $O=$ centroid of that orbit is G-fixed.
- so can use unit sphere \mathbb{S}^{2} centred at O
- the mirrors of all reflections in G pass through O and subdivide \mathbb{E}^{3} into various 'conical regions' all sharing the apex O and each bounded by certain mirrors
- we can manufacture a kaleidoscope by lining one such region with real physical mirrors

Geometric Properties of G :

- any point $P \in \mathbb{E}^{3}$ has a finite G-orbit
- but $O=$ centroid of that orbit is G-fixed.
- so can use unit sphere \mathbb{S}^{2} centred at O
- the mirrors of all reflections in G pass through O and subdivide \mathbb{E}^{3} into various 'conical regions' all sharing the apex O and each bounded by certain mirrors
- we can manufacture a kaleidoscope by lining one such region with real physical mirrors
- the cones subdivide \mathbb{S}^{2} into spherical polygons.

Geometric Properties of G :

- any point $P \in \mathbb{E}^{3}$ has a finite G-orbit
- but $O=$ centroid of that orbit is G-fixed.
- so can use unit sphere \mathbb{S}^{2} centred at O
- the mirrors of all reflections in G pass through O and subdivide \mathbb{E}^{3} into various 'conical regions' all sharing the apex O and each bounded by certain mirrors
- we can manufacture a kaleidoscope by lining one such region with real physical mirrors
- the cones subdivide \mathbb{S}^{2} into spherical polygons.

The cube is typical ...

The cube $\{4,3\}$ and its group $G=[4,3]$

Barry Monson (UNB), Summer School on Symmetries of Coml Reflection and Rotation groups in Ordinary Space

The cube $\{4,3\}$ and its group $G=[4,3]$

Schläfli symbol $=\{4,3\}$ means all facets are squares $\{4\}$, and

Barry Monson (UNB), Summer School on Symmetries of Coml Reflection and Rotation groups in Ordinary Space

The cube $\{4,3\}$ and its group $G=[4,3]$

Schläfli symbol $=\{4,3\}$ means all facets are squares $\{4\}$, and all vertex-figures are equilateral triangles $\{3\}$ (simply put, vertices have degree 3)

The cube $\{4,3\}$ and its group $G=[4,3] \quad$ bord

Schläfli symbol $=\{4,3\}$ means all facets are squares $\{4\}$, and all vertex-figures are equilateral triangles $\{3\}$ (simply put, vertices have degree 3)

The cube has 9 mirrors of symmetry 3 red (parallel to facets)
6 blue (through opp. edge pairs)

Here's what we see on the sphere \mathbb{S}^{2}

Here's what we see on the sphere \mathbb{S}^{2}

Pick one 'base' cone. It meets the sphere in a base spherical triangle with angles $\frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}$. It does look like a 'flag'.

Here's what we see on the sphere \mathbb{S}^{2}

Pick one 'base' cone. It meets the sphere in a base spherical triangle with angles $\frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}$. It does look like a 'flag'.

The whole sphere is tiled by 48 such triangles. The order of group G must equal 48.

What's going on? $G=[4,3]$ is a typical reflection group...

Pick a base spherical triangle K. Let r_{0}, r_{1}, r_{2} be reflections in the (extended) sides of K. Thus $r_{j}^{2}=\left(r_{0} r_{1}\right)^{4}=\left(r_{1} r_{2}\right)^{3}=\left(r_{0} r_{2}\right)^{2}=1$ which we encode in this Coxeter diagram:

- 4 - 3 -

What's going on? $G=[4,3]$ is a typical reflection group...

Pick a base spherical triangle K. Let r_{0}, r_{1}, r_{2} be reflections in the (extended) sides of K. Thus $r_{j}^{2}=\left(r_{0} r_{1}\right)^{4}=\left(r_{1} r_{2}\right)^{3}=\left(r_{0} r_{2}\right)^{2}=1$ which we encode in this Coxeter diagram:

What's going on? $G=[4,3]$ is a typical reflection group...

Pick a base spherical triangle K. Let r_{0}, r_{1}, r_{2} be reflections in the (extended) sides of K. Thus $r_{j}^{2}=\left(r_{0} r_{1}\right)^{4}=\left(r_{1} r_{2}\right)^{3}=\left(r_{0} r_{2}\right)^{2}=1$ which we encode in this Coxeter diagram:

Coxeter used a decorated diagram like

to summarize Wythoff's construction for a regular or Archimedean poyhedron whose symmetry group is $G(=[4,3]$ in this example).

Wyrhoff's construction

Wyrhoff's construction

- find base vertex v on the mirrors for unringed nodes (here 1 and 2)

Wyrhoff's construction

- find base vertex v on the mirrors for unringed nodes (here 1 and 2)
- take the G-orbit of v, then convex hull of orbit. What do we get?

Wyrhoff's construction

- find base vertex v on the mirrors for unringed nodes (here 1 and 2)
- take the G-orbit of v, then convex hull of orbit. What do we get?
- Hint: orbit $=$ all such points on 3 blue \& 3 yellow triangles.

Wyrhoff's construction

- find base vertex v on the mirrors for unringed nodes (here 1 and 2)
- take the G-orbit of v, then convex hull of orbit. What do we get?
- Hint: orbit = all such points on 3 blue \& 3 yellow triangles.
- Coxeter gave some structure, eg. base edge $e=v, v^{r_{0}}$. base facet f has vertices $v, v^{r_{0}}, v^{r_{0} r_{1} r_{0}}, v^{r_{0} r_{1}}$

Wyrhoff's construction

- find base vertex v on the mirrors for unringed nodes (here 1 and 2)
- take the G-orbit of v, then convex hull of orbit. What do we get?
- Hint: orbit $=$ all such points on 3 blue \& 3 yellow triangles.
- Coxeter gave some structure, eg. base edge $e=v, v^{r_{0}}$. base facet f has vertices $v, v^{r_{0}}, v^{r_{0} r_{1} r_{0}}, v^{r_{0} r_{1}}$ so we do recreate a square $\{4\}$.

So it's easy to identify this thing:

So it's easy to identify this thing:

The cube of course!

Identify

Identify

(courtesy Wikipedia)
The octahedron is dual to the cube.

Identify

$$
\bullet-\frac{4}{} \bullet
$$

Identify

$$
\bullet-\frac{4}{} \bullet
$$

cuboctahedron

Identify

$$
\bigcirc \frac{4}{} \bullet \frac{3}{} \odot
$$

Identify

rhombicuboctahedron
(again courtesy Wikipedia)

Identify $\mathrm{O}-\mathrm{O}-$

In Ryan Oulton's Maple program the diagram

is implemented as
kaleidoscope(3,5,1,1,0).
You can fold up the output for insertion in a real kaleidoscope.

Identify $0-\bigcirc-$

In Ryan Oulton's Maple program the diagram

is implemented as kaleidoscope(3,5,1,1,0).
You can fold up the output for
 insertion in a real kaleidoscope.

Here you see the initial vertex...

And here is

some of the orbit:

What do we get?

Barry Monson (UNB), Summer School on Symmetries of Coml Reflection and Rotation groups in Ordinary Space

And here is

some of the orbit:

The truncated icosahedron (from Wikipedia), i.e a soccer ball.

What do we get?

General reflection groups G in \mathbb{E}^{3}

Barry Monson (UNB), Summer School on Symmetries of Coml Reflection and Rotation groups in Ordinary Space

General reflection groups G in \mathbb{E}^{3}

Let K be one of the "minimal" regions cut out on \mathbb{S}^{2} by the set of mirrors in G.

General reflection groups G in \mathbb{E}^{3}

Let K be one of the "minimal" regions cut out on \mathbb{S}^{2} by the set of mirrors in G.

Let r_{0}, \ldots, r_{n-1} be reflections in the mirrors bounding K (so $n \geq 1$; we usually take $n=3$ sides for convenient drawing).

How is G generated?

For each $g \in G$, the image K^{g} of K under the symmetry g must be another region; suppose region L is adjacent to K^{g} :

How is G generated?

For each $g \in G$, the image K^{g} of K under the symmetry g must be another region; suppose region L is adjacent to K^{g} :

Thus $L^{g^{-1}}$ is adjacent to K, so $L^{g^{-1}}=K^{r_{j}}$ for some j :

How is G generated?

For each $g \in G$, the image K^{g} of K under the symmetry g must be another region; suppose region L is adjacent to K^{g} :

Thus $L^{g^{-1}}$ is adjacent to K, so $L^{g^{-1}}=K^{r_{j}}$ for some j :

Conclude: any region L adjacent to K^{g} must equal $K^{r_{j} g}$ for some j.

There are many consequences!

There are many consequences!

- any $g \in G$ can be written $g=r_{j_{m}} \cdots r_{j_{1}}$, i.e. G is generated by reflections r_{0}, \ldots, r_{n-1} in mirrors bounding the chosen fundamental region K.

There are many consequences!

- any $g \in G$ can be written $g=r_{j_{m}} \cdots r_{j_{1}}$, i.e. G is generated by reflections r_{0}, \ldots, r_{n-1} in mirrors bounding the chosen fundamental region K.
- the sphere \mathbb{S}^{2} is tiled by isometric copies of K.

There are many consequences!

- any $g \in G$ can be written $g=r_{j_{m}} \cdots r_{j_{1}}$, i.e. G is generated by reflections r_{0}, \ldots, r_{n-1} in mirrors bounding the chosen fundamental region K.
- the sphere \mathbb{S}^{2} is tiled by isometric copies of K.
- $|G|=$ number of such copies of K needed to tile \mathbb{S}^{2}.

Barry Monson (UNB), Summer School on Symmetries of Coml Reflection and Rotation groups in Ordinary Space

Next

- show each interior angle of K has the form π / p for some integer $p \geq 2$. Call these angles $\pi / p_{0}, \ldots, \pi / p_{n-1}$.

Next

- show each interior angle of K has the form π / p for some integer $p \geq 2$. Call these angles $\pi / p_{0}, \ldots, \pi / p_{n-1}$.
- use angular excess to show K has area $\pi\left[\frac{1}{p_{0}}+\cdots+\frac{1}{p_{n-1}}-(n-2)\right]$.

Next

- show each interior angle of K has the form π / p for some integer $p \geq 2$. Call these angles $\pi / p_{0}, \ldots, \pi / p_{n-1}$.
- use angular excess to show K has area $\pi\left[\frac{1}{p_{0}}+\cdots+\frac{1}{p_{n-1}}-(n-2)\right]$.
- since this is positive and since each $\pi / p_{j} \leq \pi / 2$ we get

$$
0<\frac{n}{2}-(n-2)
$$

which shows

Next

- show each interior angle of K has the form π / p for some integer $p \geq 2$. Call these angles $\pi / p_{0}, \ldots, \pi / p_{n-1}$.
- use angular excess to show K has area $\pi\left[\frac{1}{p_{0}}+\cdots+\frac{1}{p_{n-1}}-(n-2)\right]$.
- since this is positive and since each $\pi / p_{j} \leq \pi / 2$ we get

$$
0<\frac{n}{2}-(n-2)
$$

which shows

- K has at most 3 sides, so $n=2$ or 3 , or even 1 as a 'degenerate' case. Further, when $n=2$ and K is a 'lune', we must have $\pi / p_{0}=\pi / p_{1}$. Put all this together to get

The Classification of finite reflection groups G in \mathbb{E}^{3}

G belongs to one of the following classes:

The Classification of finite reflection groups G in \mathbb{E}^{3}

G belongs to one of the following classes:

1. $G=\left\langle r_{0}\right\rangle$ is generated by one reflection and has order 2 . In this case K is a hemisphere.

The Classification of finite reflection groups G in \mathbb{E}^{3}

G belongs to one of the following classes:

1. $G=\left\langle r_{0}\right\rangle$ is generated by one reflection and has order 2. In this case K is a hemisphere.
2. $G=\left\langle r_{0}, r_{1}\right\rangle$ is a dihedral group \mathbb{D}_{p} for some $p \geq 2$. Here G has order $2 p$ and K is a lune bounded by semicircles with polar angle π / p.

The Classification of finite reflection groups G in \mathbb{E}^{3}

G belongs to one of the following classes:

1. $G=\left\langle r_{0}\right\rangle$ is generated by one reflection and has order 2. In this case K is a hemisphere.
2. $G=\left\langle r_{0}, r_{1}\right\rangle$ is a dihedral group \mathbb{D}_{p} for some $p \geq 2$. Here G has order $2 p$ and K is a lune bounded by semicircles with polar angle π / p.
3. $G=\left\langle r_{1}, r_{2}, r_{3}\right\rangle$ is generated by three reflections whose mirrors bound a spherical triangle K. The actual subcases are

The Classification of finite reflection groups G in \mathbb{E}^{3}

G belongs to one of the following classes:

1. $G=\left\langle r_{0}\right\rangle$ is generated by one reflection and has order 2. In this case K is a hemisphere.
2. $G=\left\langle r_{0}, r_{1}\right\rangle$ is a dihedral group \mathbb{D}_{p} for some $p \geq 2$. Here G has order $2 p$ and K is a lune bounded by semicircles with polar angle π / p.
3. $G=\left\langle r_{1}, r_{2}, r_{3}\right\rangle$ is generated by three reflections whose mirrors bound a spherical triangle K. The actual subcases are

- $\left(p_{1}, p_{2}, p_{3}\right)=(2,2, p)$ for any integer $p \geq 2$. Here G has order $4 p$ and can serve as the symmetry group of of a uniform p-gonal right prism.

$$
\text { more } \Rightarrow
$$

and more: the groups of the regular polyhedra

Barry Monson (UNB), Summer School on Symmetries of Coml Reflection and Rotation groups in Ordinary Space

and more: the groups of the regular polyhedra

- $\left(p_{1}, p_{2}, p_{3}\right)=(2,3,3)$. Here G has order 24 , is isomorphic to the symmetric group S_{4} and serves as the symmetry group of the regular tetrahedron $\{3,3\}$.

and more: the groups of the regular polyhedra

- $\left(p_{1}, p_{2}, p_{3}\right)=(2,3,3)$. Here G has order 24 , is isomorphic to the symmetric group S_{4} and serves as the symmetry group of the regular tetrahedron $\{3,3\}$.
- $\left(p_{1}, p_{2}, p_{3}\right)=(2,3,4)$. Here G has order 48 and can serve as the symmetry group of the cube $\{4,3\}$ or regular octahedron $\{3,4\}$. (Here $G \simeq S_{4} \times C_{2}$.)

and more: the groups of the regular polyhedra

- $\left(p_{1}, p_{2}, p_{3}\right)=(2,3,3)$. Here G has order 24 , is isomorphic to the symmetric group S_{4} and serves as the symmetry group of the regular tetrahedron $\{3,3\}$.
- $\left(p_{1}, p_{2}, p_{3}\right)=(2,3,4)$. Here G has order 48 and can serve as the symmetry group of the cube $\{4,3\}$ or regular octahedron $\{3,4\}$. (Here $G \simeq S_{4} \times C_{2}$.)
- $\left(p_{1}, p_{2}, p_{3}\right)=(2,3,5)$. Here G has order 120 and can serve as the symmetry group of the regular dodecahedron $\{5,3\}$ or regular icosahedron $\{3,5\}$. (G is not isomorphic to S_{5}; instead $G \simeq A_{5} \times C_{2}$.)

and more: the groups of the regular polyhedra

- $\left(p_{1}, p_{2}, p_{3}\right)=(2,3,3)$. Here G has order 24 , is isomorphic to the symmetric group S_{4} and serves as the symmetry group of the regular tetrahedron $\{3,3\}$.
- $\left(p_{1}, p_{2}, p_{3}\right)=(2,3,4)$. Here G has order 48 and can serve as the symmetry group of the cube $\{4,3\}$ or regular octahedron $\{3,4\}$. (Here $G \simeq S_{4} \times C_{2}$.)
- $\left(p_{1}, p_{2}, p_{3}\right)=(2,3,5)$. Here G has order 120 and can serve as the symmetry group of the regular dodecahedron $\{5,3\}$ or regular icosahedron $\{3,5\}$. (G is not isomorphic to S_{5}; instead $G \simeq A_{5} \times C_{2}$.)

We note that the order of the symmetry group $[p, q]$ for the regular polyhedron $\{p, q\}$ is

$$
\frac{4}{\frac{1}{p}+\frac{1}{q}-\frac{1}{2}}=\frac{8 p q}{4-(p-2)(q-2)}
$$

