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Isometries in the Euclidean plane E2

In the plane E2, the product of reflections r1, r2 (in intersecting lines) is

r
1

r
2

A

θ

r1r2 = rotation through angle
2θ about centre A

Note:

• compose mappings left-to-right

• the rotation r1r2 has finite period q
if θ = π/q, so usually period =∞.

• reflections reverse orientation;
determinant = −1

• rotations preserve orientation;
determinant = +1

• in space E3 r1r2 is still a rotation
(but now with a linear axis) Why?

• think of the action in a plane
perpendicular to the two planar
mirrors for r1 and r2
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From now on ...

mirrors in E3 will intersect in some point O so we can follow the action in
a unit sphere S2 centred at O.

θ

A

A’

O

for r
1

great circular

mirror for  r
2

• mirrors become great circles

• for sure r1r2 is a rotation through
2θ at centre A.

• but if we see angle θ from
mirror 1 to mirror 2 at A
(looking from outside the sphere)
then we see −θ at the antipode A′
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Reflection groups G

Let G be any finite group generated by reflections in E3.

Familiar examples: symmetry group G of a Platonic solid

Algebraic Properties of G :

• the map

G → {±1}
g 7→ det(g)

is a homomorphism.

• The kernel G+ contains all products of an even number of reflections.
G+ has index 2 in G .

• In E3 these kernel symmetries are all rotations, including identity 1.

• the other coset contains all reflections and usually other symmetries,
namely rotatory reflections = ‘spherical glides’.
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Geometric Properties of G :

• any point P ∈ E3 has a finite G -orbit

• but O = centroid of that orbit is G -fixed.

• so can use unit sphere S2 centred at O

• the mirrors of all reflections in G pass through O and subdivide E3

into various ‘conical regions’ all sharing the apex O and each bounded
by certain mirrors See a cube

• we can manufacture a kaleidoscope by lining one such region with
real physical mirrors

• the cones subdivide S2 into spherical polygons.

The cube is typical ...
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The cube {4, 3} and its group G = [4, 3] back

Schläfli symbol = {4, 3} means
all facets are squares {4}, and
all vertex-figures are equilateral
triangles {3} (simply put, vertices
have degree 3)

The cube has 9 mirrors of symmetry
3 red (parallel to facets)
6 blue (through opp. edge pairs)
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Here’s what we see on the sphere S2

Pick one ‘base’ cone. It meets the
sphere in a base spherical triangle
with angles π

4 ,
π
3 ,

π
2 . It does

look like a ‘flag ’.

The whole sphere is tiled by 48 such
triangles. The order of group G must
equal 48.
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What’s going on? G = [4, 3] is a typical reflection group...

Pick a base spherical triangle K . Let r0, r1, r2 be reflections in the
(extended) sides of K . Thus r2j = (r0r1)4 = (r1r2)3 = (r0r2)2 = 1
which we encode in this Coxeter diagram:

• 4 • 3 •

r0 ↑ r1 ↑ r2 ↑

Coxeter used a decorated diagram like

©• 4 • 3 •

to summarize Wythoff’s construction for a regular or Archimedean
poyhedron whose symmetry group is G (= [4, 3] in this example).

Barry Monson (UNB), Summer School on Symmetries of Combinatorial Structures, Cuernavaca, July, 2012, (supported in part by the NSERC of Canada)Reflection and Rotation groups in Ordinary Space



What’s going on? G = [4, 3] is a typical reflection group...

Pick a base spherical triangle K . Let r0, r1, r2 be reflections in the
(extended) sides of K . Thus r2j = (r0r1)4 = (r1r2)3 = (r0r2)2 = 1
which we encode in this Coxeter diagram:

• 4 • 3 •
r0 ↑ r1 ↑ r2 ↑

Coxeter used a decorated diagram like

©• 4 • 3 •

to summarize Wythoff’s construction for a regular or Archimedean
poyhedron whose symmetry group is G (= [4, 3] in this example).

Barry Monson (UNB), Summer School on Symmetries of Combinatorial Structures, Cuernavaca, July, 2012, (supported in part by the NSERC of Canada)Reflection and Rotation groups in Ordinary Space



What’s going on? G = [4, 3] is a typical reflection group...

Pick a base spherical triangle K . Let r0, r1, r2 be reflections in the
(extended) sides of K . Thus r2j = (r0r1)4 = (r1r2)3 = (r0r2)2 = 1
which we encode in this Coxeter diagram:

• 4 • 3 •
r0 ↑ r1 ↑ r2 ↑

Coxeter used a decorated diagram like

©• 4 • 3 •

to summarize Wythoff’s construction for a regular or Archimedean
poyhedron whose symmetry group is G (= [4, 3] in this example).

Barry Monson (UNB), Summer School on Symmetries of Combinatorial Structures, Cuernavaca, July, 2012, (supported in part by the NSERC of Canada)Reflection and Rotation groups in Ordinary Space



Wyrhoff’s construction

©• 4 • 3 •

• find base vertex v on the
mirrors for unringed nodes
(here 1 and 2)

• take the G -orbit of v , then
convex hull of orbit. What do
we get?

• Hint: orbit = all such points
on 3 blue & 3 yellow triangles.

• Coxeter gave some structure,
eg. base edge e = v , v r0 .
base facet f has vertices
v , v r0 , v r0r1r0 , v r0r1 so we do
recreate a square {4}.
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So it’s easy to identify this thing:

©• 4 • 3 •

The cube of course!

Skip to a new group G = [3, 5]

Skip to the theory
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Identify

• 4 • 3 ©•

(courtesy Wikipedia)
The octahedron is dual to the cube.
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Identify

• 4 ©• 3 •

cuboctahedron
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Identify

©• 4 • 3 ©•

rhombicuboctahedron
(again courtesy Wikipedia)
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Identify ©• 3 ©• 5 •

In Ryan Oulton’s Maple program
the diagram

©• 3 ©• 5 •

is implemented as
kaleidoscope(3,5,1,1,0).
You can fold up the output for
insertion in a real kaleidoscope.

Here you see the initial vertex...
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And here is

some of the orbit:

What do we get?

The truncated icosahedron (from
Wikipedia), i.e a soccer ball.
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General reflection groups G in E3

Let K be one of the “minimal” regions cut out on S2 by the set of mirrors
in G .

r
0

r
1

r
2K

Let r0, . . . , rn−1 be reflections in the mirrors bounding K (so n ≥ 1; we
usually take n = 3 sides for convenient drawing).
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How is G generated?

For each g ∈ G , the image K g of K under the symmetry g must be
another region; suppose region L is adjacent to K g :

g

K
g L

K

Thus Lg−1
is adjacent to K , so Lg−1

= K rj for some j :

g −1

g −1K K
g L

L

Conclude: any region L adjacent to K g must equal K rjg for some j .
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There are many consequences!

• any g ∈ G can be written g = rjm · · · rj1 , i.e. G is generated by
reflections r0, . . . , rn−1 in mirrors bounding the chosen fundamental
region K .

• the sphere S2 is tiled by isometric copies of K .

• |G | = number of such copies of K needed to tile S2.
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Next

• show each interior angle of K has the form π/p for some integer
p ≥ 2. Call these angles π/p0, . . . , π/pn−1.

• use angular excess to show K has area π[ 1
p0

+ · · ·+ 1
pn−1
− (n − 2)].

• since this is positive and since each π/pj ≤ π/2 we get

0 <
n

2
− (n − 2)

which shows

• K has at most 3 sides, so n = 2 or 3, or even 1 as a ‘degenerate’
case. Further, when n = 2 and K is a ‘lune’, we must have
π/p0 = π/p1. Put all this together to get

Barry Monson (UNB), Summer School on Symmetries of Combinatorial Structures, Cuernavaca, July, 2012, (supported in part by the NSERC of Canada)Reflection and Rotation groups in Ordinary Space



Next

• show each interior angle of K has the form π/p for some integer
p ≥ 2. Call these angles π/p0, . . . , π/pn−1.

• use angular excess to show K has area π[ 1
p0

+ · · ·+ 1
pn−1
− (n − 2)].

• since this is positive and since each π/pj ≤ π/2 we get

0 <
n

2
− (n − 2)

which shows

• K has at most 3 sides, so n = 2 or 3, or even 1 as a ‘degenerate’
case. Further, when n = 2 and K is a ‘lune’, we must have
π/p0 = π/p1. Put all this together to get

Barry Monson (UNB), Summer School on Symmetries of Combinatorial Structures, Cuernavaca, July, 2012, (supported in part by the NSERC of Canada)Reflection and Rotation groups in Ordinary Space



Next

• show each interior angle of K has the form π/p for some integer
p ≥ 2. Call these angles π/p0, . . . , π/pn−1.

• use angular excess to show K has area π[ 1
p0

+ · · ·+ 1
pn−1
− (n − 2)].

• since this is positive and since each π/pj ≤ π/2 we get

0 <
n

2
− (n − 2)

which shows

• K has at most 3 sides, so n = 2 or 3, or even 1 as a ‘degenerate’
case. Further, when n = 2 and K is a ‘lune’, we must have
π/p0 = π/p1. Put all this together to get

Barry Monson (UNB), Summer School on Symmetries of Combinatorial Structures, Cuernavaca, July, 2012, (supported in part by the NSERC of Canada)Reflection and Rotation groups in Ordinary Space



Next

• show each interior angle of K has the form π/p for some integer
p ≥ 2. Call these angles π/p0, . . . , π/pn−1.

• use angular excess to show K has area π[ 1
p0

+ · · ·+ 1
pn−1
− (n − 2)].

• since this is positive and since each π/pj ≤ π/2 we get

0 <
n

2
− (n − 2)

which shows

• K has at most 3 sides, so n = 2 or 3, or even 1 as a ‘degenerate’
case. Further, when n = 2 and K is a ‘lune’, we must have
π/p0 = π/p1. Put all this together to get

Barry Monson (UNB), Summer School on Symmetries of Combinatorial Structures, Cuernavaca, July, 2012, (supported in part by the NSERC of Canada)Reflection and Rotation groups in Ordinary Space



Next

• show each interior angle of K has the form π/p for some integer
p ≥ 2. Call these angles π/p0, . . . , π/pn−1.

• use angular excess to show K has area π[ 1
p0

+ · · ·+ 1
pn−1
− (n − 2)].

• since this is positive and since each π/pj ≤ π/2 we get

0 <
n

2
− (n − 2)

which shows

• K has at most 3 sides, so n = 2 or 3, or even 1 as a ‘degenerate’
case. Further, when n = 2 and K is a ‘lune’, we must have
π/p0 = π/p1. Put all this together to get

Barry Monson (UNB), Summer School on Symmetries of Combinatorial Structures, Cuernavaca, July, 2012, (supported in part by the NSERC of Canada)Reflection and Rotation groups in Ordinary Space



The Classification of finite reflection groups G in E3

G belongs to one of the following classes:

1. G = 〈r0〉 is generated by one reflection and has order 2. In this case K
is a hemisphere.

2. G = 〈r0, r1〉 is a dihedral group Dp for some p ≥ 2. Here G has order
2p and K is a lune bounded by semicircles with polar angle π/p.

3. G = 〈r1, r2, r3〉 is generated by three reflections whose mirrors bound a
spherical triangle K . The actual subcases are

• (p1, p2, p3) = (2, 2, p) for any integer p ≥ 2. Here G has order 4p and
can serve as the symmetry group of of a uniform p-gonal right prism.

more ⇒
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and more: the groups of the regular polyhedra

• (p1, p2, p3) = (2, 3, 3). Here G has order 24, is isomorphic to the
symmetric group S4 and serves as the symmetry group of the regular
tetrahedron {3, 3}.

• (p1, p2, p3) = (2, 3, 4). Here G has order 48 and can serve as the
symmetry group of the cube {4, 3} or regular octahedron {3, 4}. (Here
G ' S4 × C2.)

• (p1, p2, p3) = (2, 3, 5). Here G has order 120 and can serve as the
symmetry group of the regular dodecahedron {5, 3} or regular icosahedron
{3, 5}. (G is not isomorphic to S5; instead G ' A5 × C2.)

We note that the order of the symmetry group [p, q] for the regular
polyhedron {p, q} is

4
1
p + 1

q −
1
2

=
8pq

4− (p − 2)(q − 2)
.
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