Monodromy, not Dromedary

Barry Monson (UNB) Workshop on Abstract Polytopes Cuernavaca, July–August, 2012

(supported in part by the NSERC of Canada)

Exercise (not Problem) 1

What do monodromy and dromedary have in common?

Tentative solution:

The term implorationly may first have been used by Gaudiy in Exercices d'analyse of de physique mattemetiques vol. IV (1897), page 325, item nono (mano), meaning 'single', of cause, with *oppyras*, relating-toracecourse' of furning'.

Cauchy-was concerned with a complex function having **one** value when we attompt to continue it analytically by *running* along a curve.

As far as I know, Cauchy had little interest in dromedaries (14th C), which are fast *running* camele.

Tentative solution:

The term 'monodromy' may first have been used by Cauchy in *Exercices* d'analyse et de physique mathématique, vol. IV (1847), page 325, from $\mu o \nu o$ (mono), meaning 'single', of course, with $\delta \rho \delta \mu o \varsigma$, relating to 'racecourse' or 'running'.

Cauchy was concerned with a complex function having **one** value when we attempt to continue it analytically by *running* along a curve.

As far as I know, Cauchy had little interest in dromedaries (14th C), which are fast *running* camele.

Tentative solution:

The term 'monodromy' may first have been used by Cauchy in *Exercices* d'analyse et de physique mathématique, vol. IV (1847), page 325, from $\mu o \nu o$ (mono), meaning 'single', of course, with $\delta \rho \delta \mu o \varsigma$, relating to 'racecourse' or 'running'.

Cauchy was concerned with a complex function having *one* value when we attempt to continue it analytically by *running* along a curve.

As far as I know, Cauchy had little interest in dromedaries (14th C), which are fast *running* camels

Tentative solution:

The term 'monodromy' may first have been used by Cauchy in *Exercices* d'analyse et de physique mathématique, vol. IV (1847), page 325, from $\mu o \nu o$ (mono), meaning 'single', of course, with $\delta \rho \delta \mu o \varsigma$, relating to 'racecourse' or 'running'.

Cauchy was concerned with a complex function having *one* value when we attempt to continue it analytically by *running* along a curve.

As far as I know, Cauchy had little interest in dromedaries (14th C), which are fast *running* camels.

Tentative solution:

The term 'monodromy' may first have been used by Cauchy in *Exercices* d'analyse et de physique mathématique, vol. IV (1847), page 325, from $\mu o \nu o$ (mono), meaning 'single', of course, with $\delta \rho \delta \mu o \varsigma$, relating to 'racecourse' or 'running'.

Cauchy was concerned with a complex function having *one* value when we attempt to continue it analytically by *running* along a curve.

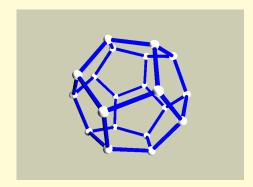
As far as I know, Cauchy had little interest in dromedaries (14th C), which are fast *running* camels.

Tentative solution:

The term 'monodromy' may first have been used by Cauchy in *Exercices* d'analyse et de physique mathématique, vol. IV (1847), page 325, from $\mu o \nu o$ (mono), meaning 'single', of course, with $\delta \rho \delta \mu o \varsigma$, relating to 'racecourse' or 'running'.

Cauchy was concerned with a complex function having *one* value when we attempt to continue it analytically by *running* along a curve.

As far as I know, Cauchy had little interest in dromedaries (14th C), which are fast *running* camels.



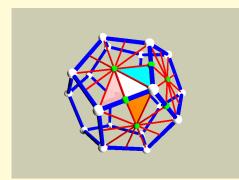
Here $\Gamma(\mathcal{D})$ is the Coxeter group

$$H_3 = \bullet \frac{5}{\bullet} \bullet \frac{3}{\bullet} \bullet$$

of order 120.

The flags correspond exactly to the triangles in a barycentric subdivision of the surface of \mathcal{D} . Here is part of that \Rightarrow

A base flag for \mathcal{D} , adjacent flags and generators



By transitivity, pick any base flag = Φ [white] Then 0-adjacent flag =: Φ^0 [pink] 1-adjacent flag =: Φ^1 [cyan] 2-adjacent flag =: Φ^2 [orange] For i = 0, 1, 2, there is a unique automorphism

$$\rho_i: \Phi \mapsto \Phi^i$$

Then $\Gamma(\mathcal{D}) = \langle \rho_0, \rho_1, \rho_2 \rangle$. Can think reflections \Rightarrow Schulte (1982) showed that the regular *d*-polytopes \mathcal{Q} correspond exactly to the *string C-groups*

$$\langle \rho_0,\ldots,\rho_{d-1}\rangle \ [\simeq \Gamma(\mathcal{Q})],$$

which we often study in their place.

▶ more

Consider any *d*-polytope Q, not necessarily regular. For each flag Φ of Q and $i = 0, \ldots, d-1$, there is a unique *i-adjacent* flag Φ^i .

The mapping $s_i : \Phi \mapsto \Phi^i$ defines an involutory bijection s_i on the set $\mathcal{F}(\mathcal{Q})$ of all flags.

Defn. The monodromy group of Q is $Mon(Q) := \langle s_0, \ldots, s_{d-1} \rangle$. (For maps, Steve Wilson [1994] calls this the "connection group".) It is easy to check that $s_i^2 = 1$ and that $(s_i s_j)^2 = 1$, for |j - i| > 1, so Mon(Q) is an sggi = string group generated by involutions,

but

can it <u>fail</u> the intersection condition needed to to be a string C-group = aut. group of regular *d*-poly?

Consider any *d*-polytope Q, not necessarily regular. For each flag Φ of Q and $i = 0, \ldots, d-1$, there is a unique *i-adjacent* flag Φ^i .

The mapping $s_i : \Phi \mapsto \Phi^i$ defines an involutory bijection s_i on the set $\mathcal{F}(\mathcal{Q})$ of all flags.

Defn. The *monodromy group* of \mathcal{Q} is $Mon(\mathcal{Q}) := \langle s_0, \ldots, s_{d-1} \rangle$.

(For maps, Steve Wilson [1994] calls this the "connection group".)

It is easy to check that $s_i^2 = 1$ and that $(s_i s_j)^2 = 1$, for |j - i| > 1, so Mon(Q) is an sggi = string group generated by involutions,

but

can it <u>fail</u> the intersection condition needed to to be a string C-group = aut. group of regular *d*-poly?

Consider any *d*-polytope Q, not necessarily regular. For each flag Φ of Q and $i = 0, \ldots, d-1$, there is a unique *i-adjacent* flag Φ^i .

The mapping $s_i : \Phi \mapsto \Phi^i$ defines an involutory bijection s_i on the set $\mathcal{F}(\mathcal{Q})$ of all flags.

Defn. The *monodromy group* of \mathcal{Q} is $Mon(\mathcal{Q}) := \langle s_0, \ldots, s_{d-1} \rangle$.

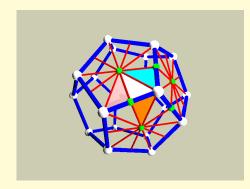
(For maps, Steve Wilson [1994] calls this the "connection group".)

It is easy to check that $s_i^2 = 1$ and that $(s_i s_j)^2 = 1$, for |j - i| > 1, so Mon(Q) is an sggi = string group generated by involutions,

but

can it <u>fail</u> the intersection condition needed to to be a string C-group = aut. group of regular d-poly?

Example 1 - more on the regular dodecahedron ${\cal D}$



Note how seemingly destructive such flag swaps are. (Think Rubik.) Even so, here we do have

 $\operatorname{Mon}(\mathcal{D})\simeq \Gamma(\mathcal{D}) \;.$

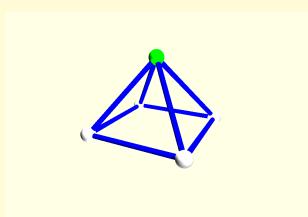
Theorem[ours in high rank] For any abstract regular d-polytope \mathcal{P} ,

 $\operatorname{Mon}(\mathcal{P})\simeq \Gamma(\mathcal{P})$.

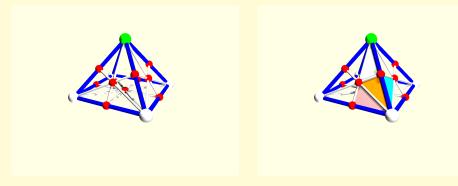
See *Mixing and Monodromy of Abstract Polytopes*, Monson, Pellicer and Williams, coming soon.

Example 2. The 4-gonal pyramid \mathcal{E} is not regular

You can see that $\Gamma(\mathcal{E})$ has order 8. Guess the order of its monodromy group \ldots



Here is a bit of the barycentric subdivison (left) with a few flags (right). Start flipping!



Example 2, continued

In fact, the monodromy group of this pyramid has order

 $2^{11} \cdot 3 = 6144$.

It follows from theorems coming up that the unique minimal regular cover of the pyramid is a finite, self-dual regular map of Schläfli type $\{12, 12\}$ and genus 257.

