From Lecture 1

Notation: $V=$ a finite-dim'l vec. sp. over field \mathbb{K}; usually char. $p \neq 2$; dual space $=\check{V}$; identity $e \in G L(V)$. The pseudo-reflection $r=r_{\varphi, a} \in G L(V)$ is defined by $r(x)=x+\varphi(x) a$, for $x \in V$.

1. Show that $\operatorname{det}(r)=1+\varphi(a)$, so $\varphi(a) \neq-1$.
2. Suppose $r_{\varphi, a} \neq e \neq r_{\psi, b}$, where a, b are independent; then $r_{\varphi, a}$ and $r_{\psi, b}$ commute if and only if $\varphi(b)=0=\psi(a)$.
3. Suppose the pseudo-reflection $r_{\varphi, a}$ is an isometry for the non-singular orthogonal space (V, \cdot). Then $r_{\varphi, a}$ must be a reflection (period 2), the root a must be non-isotropic (i.e. $a \cdot a \neq 0)$ and

$$
\begin{equation*}
r_{\varphi, a}(x)=x-2 \frac{x \cdot a}{a \cdot a} a, \quad \forall x \in V \text {. } \tag{1}
\end{equation*}
$$

Notation: write $r_{a}:=r_{\varphi, a}$ or something similar in the case of ordinary reflections.
4. In our usual setup for a balanced reflection group, we have $J=\{0, \ldots, n-1\}$ and a basis $\left\{a_{0}, \ldots, a_{n-1}\right\}$ for V. Thus $G=\left\langle r_{0}, \ldots, r_{n-1}\right\rangle$, where $r_{j}=r_{\varphi_{j}, a_{j}}$ for various $\varphi_{j} \in \check{V}$. Show that G acts irreducibly on V if and only if $\operatorname{det}(N) \neq 0$ and $\Delta(G)$ is connected.

From Lecture 2

1. The abstract Coxeter group B_{4} has order $2^{4} 4!=384$ and diagram

In fact, B_{4} is a subgroup of index 3 in the abstract Coxeter group F_{4} with diagram

Find a set of coset representatives (i.e. transversal) for B_{4} as a subgroup of F_{4}.
2. (from [1]) Suppose that G is an irreducible subgroup of $G L(V)$ and is generated by reflections (of ordinary period 2). If G also leaves invariant a non-zero bilinear form $x \cdot y$, show that $x \cdot y$ must in fact be symmetric and non-singular.

From Lectures 3-4

1. (Pretend you don't know anything about the standard faithful representation $R: \Gamma \rightarrow G$.) Suppose the Coxeter group $\Gamma=\left\langle\rho_{0}, \ldots, \rho_{n-1}\right\rangle$ has only even branch labels (allowing ∞, and 2 for no branch at all). Use von Dyck's substitution theorem to prove that $|\Gamma| \geqslant 2^{n}$.
2. Determine the essentially distinct modified diagrams $\Delta(G)$ (representing invariant lattices) for the crystallographic Coxeter group with diagram $\Delta_{c}(G)$:

From Lectures 5-6

1. Prove that $\cos (\pi / 5)=\tau / 2$ and that $4 \cos ^{2}(\pi / 10)=\tau+2$.

References

[1] N. Bourbaki, Groupes et Algébres de Lie, Chapitres IV-VI, Hermann, Paris, 1968.

