#### FIELDS INSTITUTE

| Barry Monson | Assigned Problems | October 2011 |
|--------------|-------------------|--------------|

### From Lecture 1

Notation: V = a finite-dim'l vec. sp. over field K; usually char.  $p \neq 2$ ; dual space  $= \check{V}$ ; identity  $e \in GL(V)$ . The pseudo-reflection  $r = r_{\varphi,a} \in GL(V)$  is defined by  $r(x) = x + \varphi(x)a$ , for  $x \in V$ .

- 1. Show that  $det(r) = 1 + \varphi(a)$ , so  $\varphi(a) \neq -1$ .
- 2. Suppose  $r_{\varphi,a} \neq e \neq r_{\psi,b}$ , where a, b are independent; then  $r_{\varphi,a}$  and  $r_{\psi,b}$  commute if and only if  $\varphi(b) = 0 = \psi(a)$ .
- 3. Suppose the pseudo-reflection  $r_{\varphi,a}$  is an isometry for the non-singular orthogonal space  $(V, \cdot)$ . Then  $r_{\varphi,a}$  must be a reflection (period 2), the root *a* must be non-isotropic (i.e.  $a \cdot a \neq 0$ ) and

$$r_{\varphi,a}(x) = x - 2 \frac{x \cdot a}{a \cdot a} a, \quad \forall x \in V.$$
(1)

Notation: write  $r_a := r_{\varphi,a}$  or something similar in the case of ordinary reflections.

4. In our usual setup for a <u>balanced</u> reflection group, we have  $J = \{0, \ldots, n-1\}$  and a basis  $\{a_0, \ldots, a_{n-1}\}$  for V. Thus  $G = \langle r_0, \ldots, r_{n-1} \rangle$ , where  $r_j = r_{\varphi_j, a_j}$  for various  $\varphi_j \in \check{V}$ . Show that G acts irreducibly on V if and only if det $(N) \neq 0$  and  $\Delta(G)$  is connected.

#### From Lecture 2

1. The abstract Coxeter group  $B_4$  has order  $2^4 4! = 384$  and diagram

$$4 \cdot 3 \cdot 3 \cdot 3$$

In fact,  $B_4$  is a subgroup of index 3 in the abstract Coxeter group  $F_4$  with diagram

$$\bullet - 3 \bullet - 4 \bullet - 3 \bullet$$

Find a set of coset representatives (i.e. transversal) for  $B_4$  as a subgroup of  $F_4$ .

2. (from [1]) Suppose that G is an irreducible subgroup of GL(V) and is generated by reflections (of ordinary period 2). If G also leaves invariant a non-zero bilinear form  $x \cdot y$ , show that  $x \cdot y$  must in fact be symmetric and non-singular.

## From Lectures 3-4

- 1. (Pretend you don't know anything about the standard faithful representation  $R: \Gamma \to G$ .) Suppose the Coxeter group  $\Gamma = \langle \rho_0, \dots, \rho_{n-1} \rangle$  has only even branch labels (allowing  $\infty$ , and 2 for no branch at all). Use von Dyck's substitution theorem to prove that  $|\Gamma| \ge 2^n$ .
- 2. Determine the essentially distinct modified diagrams  $\Delta(G)$  (representing invariant lattices) for the crystallographic Coxeter group with diagram  $\Delta_c(G)$ :



## From Lectures 5-6

1. Prove that  $\cos(\pi/5) = \tau/2$  and that  $4\cos^2(\pi/10) = \tau + 2$ .

# References

[1] N. BOURBAKI, Groupes et Algébres de Lie, Chapitres IV-VI, Hermann, Paris, 1968.