
Examples of Polygons, Polyhedra, Polytopes

for Hand and Machine Calculation

1. The key reference is Abstract Regular Polytopes by Peter McMullen
and Egon Schulte. See also the survey paper by McMullen.

Coxeter in Regular Polytopes takes a more ‘classical’ approach, which
is quite ‘visual’ and very rewarding. He is mainly concerned with the
regular convex polytopes, which in dimension

• n = 2 are the familiar regular convex polygons: {3} = equilateral
triangle; {4} = square; {5} = regular pentagon, . . . . In general.
for any integer p ≥ 3 we have a regular polygon {p}, which is
unique up to similarity. In other words, for these classical ex-
amples, just being regular is enough to specify the shape up to
rescaling.

• n = 3 are the regular (or Platonic) solids {3, 3}, {4, 3}, {3, 4},
{3, 5} and {5, 3}.

2. Exercise. Identify the regular polytopes of dimension n = 1; n = 0;
n = −1(???).

3. An abstract regular n-polytope P is a natural and wide-ranging gen-
eralization of the classical objects. Since P is a combinatorial object,
actually a very special partially ordered set, we say P has rank n (rather
than dimension n).

To glimpse how this generalization comes about take an ordinary poly-
hedron like a cube; assemble its 8 vertices, 12 edges and 6 square facets
into one set and declare that one of these 26 things is ≤ another when
it lies on the other. From this you get a poset (partially ordered set),
whose purely combinatorial properties ultimately suggest the defini-
tions for their abstract counterparts.
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Note that the rank n of the abstract polytope P is the number of kinds
of faces, i.e. things from the list

vertex, edge, polygon,. . . , j-face, . . . , (n − 1)-face = facet.

Actually, to these proper faces we adjoin exactly two improper faces:
Fn at the top (think the whole polytope), and F−1 at the bottom (think
∅).
Thus the abstract cube is a partially ordered set with a total of 28
elements.

Exercise. Sketch Hasse diagrams for the triangle {3}, the square {4},
and the cube {4, 3}. Locate the first two diagrams as subdiagrams in
the last.

4. Every abstract regular polytope P has a symmetery group G (also
know as automorphism group ), which has very special properties. Such
groups are called string C-groups.

A cornerstone of the theory is that, conversely, from each string C-

groups G we can reconstruct an abstract regular polytope.

Thus we can for now focus on understanding string C-groups, then later
construct and investigate the corresponding regular polytope P . We
might write P(G) to indicate the polytope which we can reconstruct
from G.

Note that we often say ‘regular polytope’ when ‘abstract regular poly-
tope’ is meant.

5. Exercise. Interpret the statements

(a) G(P)

(b) P ≃ P(G(P))

(c) G ≃ G(P(G))
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6. Definition of string C-group.

A string C-group G of rank n is a group with n specified generators
having very special properties:

G = 〈r0, . . . , rn−1〉 .

A. Relations The generators satisfy and fulfil the following relations
for specific integers p1, p2, . . . , pn−1 taken from {2, 3, . . . ,∞}:

r2
j = 1, for 0 ≤ j ≤ n − 1

(rj−1rj)
pj = 1 for 1 ≤ j ≤ n − 1

(rirj)
2 = 1 whenever |i − j| > 1

B. The Intersection Condition For any subsets
I, J ⊆ {0, 1, . . . n − 1} we have

GI ∩ GJ = GI∩J .

Note: by definition, GI := 〈rk : k ∈ I〉 is the subgroup of G generated
by the rk’s as the subscript k runs through the indexing subset I.

This concludes the definition of string C-group.

7. Comments.

(a) The first set of equations in A demand that each generator rj have
period 2. In other words rj is an involution. Intuitively, we think
of rj as a reflection, although on this combinatorial level, there
are as yet no mirrors around.

(b) The second set of equations specifies that rj−1rj, which we might
think of as a rotation, has period pj. We allow pj = 2; and pj = ∞
merely says that rj−1rj has infinite period, which means of course
that the whole group G could not be finite. Another way to say
this is that rj−1rj has no equation to satisfy. Think of reflections
in parallel mirrors, for which the product - a translation - has
infinite period.
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(c) The third set of equations says that r0r2, r0r3, r1r3, etc. all have
period 2. But this means, more usefully, that r0 commutes with
each of r2, r3, etc.

(d) Exercise. If elements g and h in the group G each have period
2, prove that gh has period 2 if and only if gh = hg.

(e) The rj’s may well satisfy other relations which are ‘independent’ of
those explicitly set out in A. This is OK, so long as the intersection
condition B still holds.

(f) Exercise. Identify n, p1, . . . , pn−1 for the regular octahedron; the
regular pentagon; and the ordinary tiling of Euclidean space by
unit cubes.

(g) Exercise. By definition, GI , GJ and GI∩J are certain standard

subgroups of G. From our investigation of the cube, we know that
they are crucial objects.

Check that

i. GI ∩ GJ is also a subgroup of G.

ii. we always have
GI ∩ GJ ⊇ GI∩J .

I’ll give an example with actual inequality; since the inter-
section condition B is then violated, such examples suggest
geometric structures in which some features of a polyhedron
say are destroyed.

(h) Aside. Certainly another set of generators for the same group G
may fail to have these properties; then G is not a string C-group
for those bad generators. On the other hand, the same group G
could have yet another set of nice generators for which it becomes
a new and different kind of string C-group.

8. Definition. If the regular n-polytope P has the above group G, we
say that P has Schläfli symbol

{p1, p2, . . . , pn−1} .
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9. Exercise. Give Schläfli symbols for the regular octahedron; for the
bathroom tiling of the plane by identical hexagons; for the usual space
filling by cubes.

Sketch each of these regular polytopes. Locate a base flag and identify
the generating reflections.

10. Exercise. Do the same as in the previous exercise for a new type of
polytope. Take a 2×2 square (subdivided as usual into 4 squares) and
glue opposite parallel edges together in the faniliar way to get a torus.
What is n here? Identify the reflections. How big is G?

Sketch a Hasse diagram.

11. Exercise. Write out the standard equations satisfied by the generators
of the symmetry group G for a regular 4-polytope of type {p1, p2, p3}.
We note that these generators might satisfy other equations not related
to those in the standard list.

In the worst case, how many subgroup checks are required to verify the
intersection condition.

12. Exercise. Failure of the intersection condition.

The usual tessellation of the plane by unit squares is the regular 3-
polytope {4, 4}. Its edges are dotted in the figure below.

Inscribed in the tiling is a single square with dark edges and area 2
(Check!). Also shaded in is a base flag (labelled 1) for the tiling {4, 4}.

1
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(a) Locate generating reflections r0, r1, r2 for the background {4, 4}
tessellation.

What is the order of group G = 〈r0, r1, r2〉? Write out the stan-
dard relations for these generators.

(b) Subdivide the dark square into copies of the base flag. You get
say q = ? copies.

(c) Now we create a torus by gluing together opposite sides of the
dark square, as indicated by the arrows along its parallel sides.
The torus inherits from the {4, 4} tessellation various vertices,
edges and square facets.

Compute the number v of distinct vertices on the torus, the num-
ber e of edges and the number f of squares.

Compute the Euler characteristic χ := v − e + f for this torus.

(d) Try to sketch this torus, donut style, with its vertices, (now curved)
edges and (curved) squares.

(e) Note: The torus also inherits the q copies of the base flag and
the reflections r0, r1, r2. Strictly speaking we should call them by
new letters, say r̃0, etc., since we have changed the underlying
geometry. But for simplicity let’s stick with r0, r1, r2.

With this new meaning, r0, r1, r2 satisfy the old relations from be-
fore, plus new relations which correpond to the geometrical process
of gluing together the opposite edges.

(f) Label the q copies of the base flag 1, . . . , q. (You already have 1
labelled.) The new rj ’s thus act as permutations on {1, 2, . . . , q}.
Write out these permutations of degree q.

Enter them on Gap and construct the corresponding group G.
What is the order of G? Should you be surprised?

(g) Check that the standard relations for the new generators continue

to hold. However, as I said, some new relations must also hold.
To see what, let’s look at the geometry.

Look at the the translation t which runs diagonally
√

2 units in
the northeast direction. It is exactly this translation which has
the effect of gluing the southwest edge of the dark square to the
northeast edge. Of course, in the orginal {4, 4} tessellation, the

6



translation t has infinite period. (And {4, 4} is an infinite polyhe-
dron; see part (a) above.)

Now t is a symmetry of the tessellation {4, 4}. Since the original
rj ’s generate the infinite symmetry group for {4, 4}, we must be
able to express t in terms of r0, r1, r2. Do that. (Hint: use refac-
toring; since t is direct, you should obtain a word of even length
in the rj ’s.)

(h) Now, from the point of view of a bug living on the torus the
‘new’ t is the identity! Check that in the new finite group G the
generators rj satisfy an extra equation corresponding to the way
that t factors.

(i) Now look at the intersection condition on this finite group. We
shall see that the crucial check concerns I = {0, 1} and J = {1, 2},
so that I ∩ J = {1}. Then GI ∩ GJ

?
= GI∩J becomes

〈r0, r1〉 ∩ 〈r1, r2〉 ?
= 〈r1〉 .

Check what happens for the current group G.

(j) Sketch the Hasse diagram for this structure. Since the intersection
condition fails in part, this structure is not a 3-polytope (polyhe-
dron), although it does describe a perfectly good torus. Can you
see in the diagram where ‘polytopality’ fails geometrically?

13. Exercise(still with the tessellation {4, 4}). If the identifying transla-
tion t has the vector (b, 0), for some integer b ≥ 2, then we do actually
get regular 3-polytope, or regular toroid for short. (When b = 1 there
is a structural flaw similar to that in the previous question.)

We denote this toroid by {4, 4}(b,0). For it, find v, e, f and the order of
G. Write down a full set of relations, both standard and special, for
this group.
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14. Let’s leave the torus and move to the sphere. A rubbery cube {4, 3}
inflates to a sphere, so we might say that the corresponding group
G = 〈r0, r1, r2〉 is of spherical type. We saw that the standard relations
were

r2
0 = r2

1 = r2
2 = (r0r1)

4 = (r1r2)
3 = (r0r2)

2 = 1 . (1)

Remarks: In fact, these are the only defining relations needed for the
group G, which we recall has order 48. Accordingly, G is an example
of a Coxeter group.

On my summer-stuff website you can find a Gap file ”refgp” for dealing
with such relations and the groups which they define.

Recall that the central isometry z sends each vertex of the cube to its
antipode. As a matrix, z corresponds to −I3×3.

Here we are going to play the same trick with the central inversion z
as we did with the translation t on the square tessellation.

Exercises.

(a) Represent G on Gap by permutations of the vertices labelled
1, . . . , 8.

(b) Just looking at your cube, write down z as a permutation.

(c) What does it mean to say that z is a central element in G?

(d) Show that the subgroup K = 〈z〉 is the centre of G. Use Gap if
you wish. What is the order of K?

(e) Show that K ⊳ G (K is normal in G).

(f) Use Gap, or otherwise, construct the quotient group Q := G/K.
The natural homomorphism ϕ : G → K is onto, so that the rj’s
map to generators sj := ϕ(rj) of the quotient group.

So define sj this way in Gap.
Hint: if you define Q as above, then Gap will likely automatically
produce what you want. The first generator s0 will then be Q.1
in Gap.

(g) Write out the standard relations satisfied by s0, s1, s2 and check
whether they really do hold, either by eye or on Gap.
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(h) Trickier: write out the special extra relation satisfied by s0, s1, s2

in Q.
Hint: taking the quotient amounts to making z equal the iden-
tity, now on a new space obtained from the sphere by identify-
ing (=gluing together) all pairs of antipodal points. This new
surface is called a projective plane. Like the Möbius band it is
non-orientable.

Thus, back on the cube or on the sphere, you should factor the
rotatory reflection z in terms of the reflections r0, r1, r2. Since z is
opposite, the resulting word in the rj’s will have an odd number
of terms.

(i) Check on Gap that the corresponding word in the sj’s gives the
identity. From the point of view of a bug on the projective plane,
z equals 1.

(j) Check the intersection property for Q = 〈s0, s1, s2〉.
Hint: we must check that

QI ∩ QJ = QI∩J

for all I, J ⊆ {0, 1, 2}.
At the worst, there are 82 = 64 choices for the two subsets I and
J of {0, 1, 2}. Well, since the test is symmetric in I and J , there
are really only 32 tests. And, in fact, several of the tests work
automatically; for example, if either I or J equals the whole set
{0, 1, 2} or the empty set ∅, then QI ∩QJ = QI∩J simply becomes
QJ = QJ , which is true anyway. In other words, we can ignore
several extreme cases. Note that Q∅ = {1}, being the smallest
group containing nothing.

Anyway, a more careful analysis shows that in rank 3 we actually
need to perform only two checks:

• that each sj really does have period 2; and

• that Q{0,1} ∩ Q{1,2} = Q{1}

Check these conditions on Gap, or otherwise, for the group Q.

(k) Note: in the non-polyhedral torus a few questions back, you should
have found that this last equality failed! (We had rj generating
G there instead of sj generating Q.)
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(l) By now you should know the order of the rank 3 string C-group Q.
From it, we get an abstract regular polyhedron H, for hemi-cube.
Compute v, e, f for it. Now compute the Euler characteristic of
the projective plane.

We will denote the hemi-cube by {4, 3}3. Can you guess why?

Try to sketch H in a way that is reminiscent of our earlier diagram
for the torus.

(m) What group is Q exactly? What more familiar 3-dimensional
structure has symmetry group Q? Can we use this fact to cre-
ate an accessible model for the unfamiliar polyhedron H ?

15. Repeat the key parts of the previous question for another centrally sym-
metric Platonic solid, the regular icosahedron {3, 5} with 12 vertices.
This will be crucial to our summer project.

Exercises

(a) We begin with the group G = 〈r0, r1, r2〉 for the icosahedron.
What is its order? You may want to get it on Gap, say by per-
mutations of the 12 vertices.

(b) Factor the central element z in terms of the rj’s.

(c) Compute the quotient group Q := G/〈z〉. What is its order?

(d) Identify Q and check the intersection condition, as in 14(j).

(e) From Q we get a regular polyhedron called the ‘hemi-icosahedron’
and denoted {3, 5}5. Compute v, e, f and the Euler characteristic.

(f) Where did the subscript 5 come from?

(g) From the same group Q we get the dual polyhedron, namely the
‘hemi-dodecahedron’ {5, 3}5. There is no need to recompute: we
simply relabel the old generator s0 for Q as s2 and the old s2 as
s0. The subgroups Q0, etc. follow suit.

Put even more simply, just take the Hasse diagram for {3, 5}5 and
turn it upside down to get the Hasse diagram for {5, 3}5 !
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Our 4-polytope {{3, 5}5 , {5, 3}5}

16. We need some background on finite fields and matrix groups over them.

The set
Z11 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} (2)

becomes a field when we work with its elements modulo 11. (We get a
field since 11 is prime.)

Thus we can add, subtract, multiply and divide (except by 0), according
to the ‘usual rules’ of arithmetic, though with unconventional results,
of course. Since all operations are to be closed, every end computation
must be one of the 11 numbers in (2) above.

For example, as ordinary integers we have 5 · 9 = 45 ≡ 1 (mod 11).
Thus in Z11 we have 5 · 9 = 1, so that

1

5
= 9 and

1

9
= 5 .

Exercises

(a) Compute 1
2
, 1

3
, 1

4
, 1

6
, 1

7
, 1

8
, 1

10
.

(b) Compute −1,−3, −4
7

, 9
2

+ 3
5
.

(c) Determine {x2 : x ∈ Z11}.
(d) Find all solutions, if any, to the following equations:

x2 = 1 , x2 = −2 , x2 + 8 = 0 , x2 = 5

x2 + x + 2 = 0
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17. Matrix algebra, including determinants, inverses for square matrices,
row reduction, basis theorems, etc. works in the customary way over
any field, in particular over Z11. Consider this matrix with entries from
Z11:

A =

[

2 3
4 5

]

Then det(A) = 2 · 5 − 3 · 4 = 9 6= 0, so that

A−1 =
1

9

[

5 −3
−4 2

]

= 5

[

5 8
7 2

]

=

[

3 7
2 10

]

.

Check this!

18. Exercise. Verify directly for general 2 × 2 matrices

A1 =

[

a1 b1

c1 d1

]

, A2 =

[

a2 b2

c2 d2

]

that
det(A1A2) = det(A1) det(A2) . (3)

Since your calculation uses only ordinary algebra, it will work over any
field, in particular over Z11.

19. Exercise. How many 2 × 2 matrices over Z11 are there?

20. Exercise. Let

V = Z
2
11 = Z11 × Z11 = {(x, y) : x, y ∈ Z11} .

How many points are there in V ?

With the usual componentwise operations on the row vectors (x, y),
V becomes a 2-dimensional vector space over Z11. The standard basis
is just

e1 = (1, 0), e2 = (0, 1) .

I am using rows here for convenient type-setting; but columns work
just as well, and are more suitable for right to left calculation, as we
have seen.
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21. Exercise. The line spanned by any fixed non-zero vector (a, b) ∈ V is

L := {t(a, b) : t ∈ Z11} .

This line is a 1-dimensional subspace of V .

How many points lie on such a line?

22. Exercise. Recall that a matrix

A =

[

a b
c d

]

is invertible if and only if its rows are linearly independent, that is, if
and only if neither row is a multiple of the other.

Since (0, 0) = 0(c, d), this means that A−1 exists if and only if the top
row (a, b) is non-zero and the bottom row (c, d) is not on the the line
L spanned by the top row.

Using these ideas, how many invertible 2× 2 matrices A are there over
Z11?

23. Definition. The general linear group

GL(2, 11) := {2 × 2 invertible matrices A over Z11} .

Verify that GL(2, 11) really is a group with matrix multiplication as
the operation. You have to check that A, B invertible implies that A−1

and AB are themselves invertible. This is almost obvious! Or you
could use (3).

24. Exercise. What is the order of GL(2, 11)?

25. Exercise. Look at the set of 10 non-zero elements in Z11, namely

Z
∗
11 := {x ∈ Z11 : x 6= 0} .

Check that Z
∗
11 is a group (of order 10) under multiplication modulo

11. In fact, check that it is a cyclic group.
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26. Exercise. Define a function

δ : GL(2, 11) → Z
∗
11

A 7→ det(A)

What equation guarantees that δ a group homomorphism?

Prove that δ is onto.

What is the order of the quotient GL(2, 11)/ ker(δ)?

27. Definition. The special linear group

SL(2, 11) := ker(δ) .

What is the order of SL(2, 11)?

Simply put, SL(2, 11) is the group of all 2 × 2 matrices over Z11 with
determinant 1.

28. Exercise. By hand, compute the center of SL(2, 11). Check on Gap.

Hint: a central element is a 2 × 2 matrix

Z =

[

x y
z t

]

which has determinat xt−yz = 1 and which commutes will all matrices
of determinant 1. So see what this means for simple matrices like

[

1 1
0 1

]

or

[

1 0
1 1

]

.

29. Exercise. The center Cen of SL(2, 11) consists of all such matrices
Z. Show that Cen is normal subgroup of SL(2, 11) and determine its
order.

30. Definition. The projective special linear group

PSL(2, 11) := SL(2, 11)/Cen .

So we have a quotient group. What is its order?
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31. Calculating in PSL(2, 11).

You should have found that Cen = {±I}, where I is the 2× 2 identity
matrix. Thus each individual element in the quotient group PSL(2, 11)
is really a coset, typically A ·Cen = A{±I} = {±A}. Such a coset is to
be considered as one entity on the quotient group. Intuitively, we ‘iden-
tify’ matrix A and its negative −A (both of which have determinant
1).

In practical terms, we just multiply 2 × 2 matrices of determinant 1
over Z11 as usual, but think of A and −A as being the ‘same’.

32. Example. Let

R =

[

0 1
−1 0

]

,

(if our field were the reals we would think 90◦ rotation here). Now

R2 =

[

−1 0
0 −1

]

= −I ,

which generates the center Cen. Thus, as an element r := R · Cen =
{±R} ∈ PSL(2, 11), we simply have

r2 = 1 .

We shall soon think of such r’s as ‘reflections’.

33. Project. Find four generators r0, r1, r2, r3 for PSL(2,11), which satisfy
the standard relations for a certain 4-polytope, namely

r2
0 = r2

1 = r2
2 = r2

3 = (r0r1)
3 = (r1r2)

5 = (r2r3)
3 = 1 ,

(r0r2)
2 = (r0r3)

2 = (r1r3)
2 = 1 ,

along with other special relations which embody the projective plane
nature of the facets and vertex figures:

(r0r1r2)
5 = (r1r2r3)

5 = 1 .

Hint: on Gap one can manufacture the matrix group SL(2, 11) along
with a 2 : 1 homomorphism f from SL(2, 11) to some permutation
group, which is easier to work with. Then try to find four generating
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permutations which satisfy the equations and work backward, using
f−1 to find the matrices. Of course, f−1 will then produce a matrix
and its negative.

Or you can work by hand. Pick a convenient matrix for r0 to start.
Whenever you need something equal 1, the corresponding matrix prod-
uct can be off by the negative. For example, on the level of matrices,
either R2

0 = −I or R2
0 = I will be OK.

The easiest place to start is with the commuting relations. For example,
say you know R0, but not R2, which we therefore write as an unknown
matrix

R2 =

[

a b
c d

]

,

of determinant 1 = ad − bc. Then choose to work with either R0R2 =
R2R0 or R0R2 = −R2R0; this gives some equations, which you can use
to simplify R2. A good bit of inspired guesswork, or brute force trial
and error on Gap, may be needed.

34. Exercise. Check that G = 〈r0, r1, r2, r3〉 satisfies the intersection con-
dition, so that we really do have the symmetry group of a 4-polytope
P. This polytope will be denoted

{{3, 5}5 , {5, 3}5} .

How many vertices, edges, polygons (= 2-faces), and facets (= 3-faces)
does P have?

35. The v vertices correspond to right cosets of the subgroup G0 := 〈r1, r2, r3〉.
This will give a very convenient permuatation representation of degree
v for the group G.

Get the rj’s in this form. (Quite possibly you already have this.)

Now every permutation of degree v amounts to a v × v permutation
matrix over the reals R. (See your linear algebra text.) Get these
matrices; there are built in commands in Gap for this. But to avoid
confusion with the 2× 2 matrices mod 11, call these new real matrices
something else, say p0, p1, p2, p3. Check that the resulting matrix group
has the correct order.

Now you can begin to see why we have to work with such a high-
dimensional real model for the polytope P.
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