Barry Monson	Lecture 1: Abstract Regular Polytopes and Reflections	October 2011

Introduction: Regular convex polytopes certainly have 'reflection symmetry'. We often think the same way when imagining abstract regular polytopes. But what are reflections and how might they generate the automorphism group $\Gamma(\mathcal{P})$ of an abstract polytope \mathcal{P} ? We first take a brief look at abstract things. See Section 1 of the notes posted at

http://www.math.unb.ca/~barry/fields/outline.pdf

Abstract Polyhedra: If the *abstract regular* 3-*polytope* (or polyhedron) \mathcal{P} has type $\{p_1, p_2\}$, its full automorphism group $\Gamma(\mathcal{P}) = \langle \rho_0, \rho_1, \rho_2 \rangle$ satisfies (at least!) relations $\rho_j^2 = (\rho_0 \rho_1)^{p_1} = (\rho_1 \rho_2)^{p_2} = (\rho_0 \rho_2)^2 = 1$, as well as the *intersection condition*

$$\langle \rho_0, \rho_1 \rangle \cap \langle \rho_1, \rho_2 \rangle = \{1\}. \tag{1}$$

You may think of such a polyhedron \mathcal{P} as a (fully) regular map, made *polyhedral* by (1).

Typical fonts: Greek letters as above in 'abstract' situations, or for finitely presented groups; Roman letters, as in $G = \langle r_0, \ldots, r_{n-1} \rangle$, for a 'concrete' linear group, where the r_j 's are actual reflections.

Reflection Groups (Section 2 of notes)

Notation: V = a finite-dim'l vec. sp. over field K; usually char. $p \neq 2$; dual space = \check{V} ; identity $e \in GL(V)$.

Definition. $r \in GL(V)$ is a *pseudo-reflection* if rank(r - e) = 1. Thus, there exist a vector $a \in V$ and linear map $\varphi \in \check{V}$, both non-zero, such that

$$r(x) = x + \varphi(x)a, \quad \forall x \in V.$$
(2)

Sometimes: write $r_{\varphi,a}$ for r to emphasize details; allow $r_{0,a} = r_{\varphi,0} = e$.

Exercises. (a) Show that $det(r) = 1 + \varphi(a)$, so $\varphi(a) \neq -1$.

(b) Show that the fixed space V^r equals ker φ (which has codimension 1 in V).

(c) Observe that the direction space $V_r := \{r(x) - x : x \in V\}$ equals $\mathbb{K}a$, which is 1-dimensional.

(d) What possible periods can a pseudo-reflection have when $\mathbb{K} = GF(p^t)$? When $\mathbb{K} = \mathbb{C}$? (e) Suppose $r_{\varphi,a} \neq e \neq r_{\psi,b}$, where a, b are independent; then $r_{\varphi,a}$ and $r_{\psi,b}$ commute if and only if $\varphi(b) = 0 = \psi(a)$.

Thus $V_r \subseteq V^r$ if-if $\varphi(a) = 0$, in which case r is defined to be a transvection.

Exercise. A transvection r has period p, if p > 2, or period ∞ , when p = 0.

(True) Reflections: If the pseudo-reflection r is not a transvection, then $V = V^r \oplus V_r$, and r acts as the scalar $1 + \varphi(a)$ on V_r . Since $p \neq 2$, we conclude that r is involutory if and only if $\varphi(a) = -2$. Because r then acts as -1 on V_r , we call r a *reflection* (in the usual sense). In this case, we say that a is a *root* for r and that $V^r = \ker \varphi$ is the *mirror* for r.

Exercises on Reflections. If $r_{\varphi,a}$, $r_{\psi,b}$ are reflections, and $\varphi(b) = 0 \neq \psi(a)$, then the commutator $[r_{\varphi,a}, r_{\psi,b}] = (r_{\varphi,a}r_{\psi,b})^2$ is the non-trivial transvection $r_{\varphi,c}$, where the new root $c = \psi(b)a$.

Pathology: In such cases, distinct reflections have the same mirror ker φ . But orthodoxy is enforced by orthogoxy:

Orthogonal Geometries and Their Reflections. An excellent source is [1].

Later V will often come equipped with a symmetric bilinear form $x \cdot y$, whose radical (subspace)

$$\operatorname{rad} V := \{ x \in V \mid x \cdot y = 0, \ \forall y \in V \} .$$

The orthogonal space V is non-singular if $radV = \{o\}$. A vector x is isotropic if $x \cdot x = 0$.

The subgroup of GL(V) which leaves $x \cdot y$ invariant is the *orthogonal group* O(V) corresponding to this form.

Exercises. (a) If V is non-singular and $g \in O(V)$, then $det(g) = \pm 1$.

(b) Suppose the pseudo-reflection $r_{\varphi,a}$ is an isometry for the non-singular orthogonal space (V, \cdot) . Then $r_{\varphi,a}$ must be a reflection (period 2), the root *a* must be non-isotropic and

$$r_{\varphi,a}(x) = x - 2 \frac{x \cdot a}{a \cdot a} a, \quad \forall x \in V.$$
(3)

Notation: we often write $r_a := r_{\varphi,a}$ in this case. (c) Do the rest of Lemma 2.1 in the notes.

Remark: Pseudo-reflections of period q > 2, such as occur in some of the unitary groups described in [3] or [2], will not concern us here. But we must confront unitary reflections of period 2.

References

- [1] E. ARTIN, Geometric Algebra, Interscience, New York, 1957.
- [2] A. M. COHEN, Finite complex reflection groups, Ann. Sci. Ecole Norm. Sup. (4), 9 (1976), pp. 379–436.
- [3] H. S. M. COXETER, *Regular Complex Polytopes*, Cambridge University Press, Cambridge, UK, 2nd ed., 1991.