Introduction: Regular convex polytopes certainly have 'reflection symmetry'. We often think the same way when imagining abstract regular polytopes. But what are reflections and how might they generate the automorphism group $\Gamma(\mathcal{P})$ of an abstract polytope \mathcal{P} ? We first take a brief look at abstract things. See Section 1 of the notes posted at

```
http://www.math.unb.ca/~barry/fields/outline.pdf
```

Abstract Polyhedra: If the abstract regular 3-polytope (or polyhedron) \mathcal{P} has type $\left\{p_{1}, p_{2}\right\}$, its full automorphism group $\Gamma(\mathcal{P})=\left\langle\rho_{0}, \rho_{1}, \rho_{2}\right\rangle$ satisfies (at least!) relations $\rho_{j}^{2}=\left(\rho_{0} \rho_{1}\right)^{p_{1}}=\left(\rho_{1} \rho_{2}\right)^{p_{2}}=\left(\rho_{0} \rho_{2}\right)^{2}=1$, as well as the intersection condition

$$
\begin{equation*}
\left\langle\rho_{0}, \rho_{1}\right\rangle \cap\left\langle\rho_{1}, \rho_{2}\right\rangle=\{1\} . \tag{1}
\end{equation*}
$$

You may think of such a polyhedron \mathcal{P} as a (fully) regular map, made polyhedral by (1).
Typical fonts: Greek letters as above in 'abstract' situations, or for finitely presented groups; Roman letters, as in $G=\left\langle r_{0}, \ldots, r_{n-1}\right\rangle$, for a 'concrete' linear group, where the r_{j} 's are actual reflections.

Reflection Groups (Section 2 of notes)
Notation: $V=$ a finite-dim'l vec. sp. over field \mathbb{K}; usually char. $p \neq 2$; dual space $=\check{V}$; identity $e \in G L(V)$.

Definition. $r \in G L(V)$ is a pseudo-reflection if $\operatorname{rank}(r-e)=1$. Thus, there exist a vector $a \in V$ and linear map $\varphi \in \check{V}$, both non-zero, such that

$$
\begin{equation*}
r(x)=x+\varphi(x) a, \quad \forall x \in V . \tag{2}
\end{equation*}
$$

Sometimes: write $r_{\varphi, a}$ for r to emphasize details; allow $r_{0, a}=r_{\varphi, 0}=e$.
Exercises. (a) Show that $\operatorname{det}(r)=1+\varphi(a)$, so $\varphi(a) \neq-1$.
(b) Show that the fixed space V^{r} equals $\operatorname{ker} \varphi$ (which has codimension 1 in V).
(c) Observe that the direction space $V_{r}:=\{r(x)-x: x \in V\}$ equals $\mathbb{K} a$, which is 1-dimensional.
(d) What possible periods can a pseudo-reflection have when $\mathbb{K}=G F\left(p^{t}\right)$? When $\mathbb{K}=\mathbb{C}$?
(e) Suppose $r_{\varphi, a} \neq e \neq r_{\psi, b}$, where a, b are independent; then $r_{\varphi, a}$ and $r_{\psi, b}$ commute if and only if $\varphi(b)=0=\psi(a)$.

Thus $V_{r} \subseteq V^{r}$ if-if $\varphi(a)=0$, in which case r is defined to be a transvection.
Exercise. A transvection r has period p, if $p>2$, or period ∞, when $p=0$.
(True) Reflections: If the pseudo-reflection r is not a transvection, then $V=V^{r} \oplus V_{r}$, and r acts as the scalar $1+\varphi(a)$ on V_{r}. Since $p \neq 2$, we conclude that r is involutory if and only if $\varphi(a)=-2$. Because r then acts as -1 on V_{r}, we call r a reflection (in the usual sense). In this case, we say that a is a root for r and that $V^{r}=\operatorname{ker} \varphi$ is the mirror for r.

Exercises on Reflections. If $r_{\varphi, a}, r_{\psi, b}$ are reflections, and $\varphi(b)=0 \neq \psi(a)$, then the commutator $\left[r_{\varphi, a}, r_{\psi, b}\right]=\left(r_{\varphi, a} r_{\psi, b}\right)^{2}$ is the non-trivial transvection $r_{\varphi, c}$, where the new root $c=\psi(b) a$.
Pathology: In such cases, distinct reflections have the same mirror $\operatorname{ker} \varphi$. But orthodoxy is enforced by orthogoxy:

Orthogonal Geometries and Their Reflections. An excellent source is [1].
Later V will often come equipped with a symmetric bilinear form $x \cdot y$, whose radical (subspace)

$$
\operatorname{rad} V:=\{x \in V \mid x \cdot y=0, \forall y \in V\}
$$

The orthogonal space V is non-singular if $\operatorname{rad} V=\{o\}$. A vector x is isotropic if $x \cdot x=0$.
The subgroup of $G L(V)$ which leaves $x \cdot y$ invariant is the orthogonal group $O(V)$ corresponding to this form.

Exercises. (a) If V is non-singular and $g \in O(V)$, then $\operatorname{det}(g)= \pm 1$.
(b) Suppose the pseudo-reflection $r_{\varphi, a}$ is an isometry for the non-singular orthogonal space (V, \cdot). Then $r_{\varphi, a}$ must be a reflection (period 2), the root a must be non-isotropic and

$$
\begin{equation*}
r_{\varphi, a}(x)=x-2 \frac{x \cdot a}{a \cdot a} a, \quad \forall x \in V . \tag{3}
\end{equation*}
$$

Notation: we often write $r_{a}:=r_{\varphi, a}$ in this case.
(c) Do the rest of Lemma 2.1 in the notes.

Remark: Pseudo-reflections of period $q>2$, such as occur in some of the unitary groups described in [3] or [2], will not concern us here. But we must confront unitary reflections of period 2.

References

[1] E. Artin, Geometric Algebra, Interscience, New York, 1957.
[2] A. M. Cohen, Finite complex reflection groups, Ann. Sci. Ecole Norm. Sup. (4), 9 (1976), pp. 379-436.
[3] H. S. M. Coxeter, Regular Complex Polytopes, Cambridge University Press, Cambridge, UK, 2nd ed., 1991.

