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Barry Monson Lecture 2: Reflection Groups and Coxeter Groups November 2011

Seeking Balance: If r,,, r,; are reflections, and p(b) = 0 # ¢(a), then 7y 7y o7y p = e,
where ¢ = a + 1(a)b. Thus two (conjugate) reflections r,, and 7, . share the same mirror but
have independent roots (check this peculiarity).

Main Concern: a group G C GL(V) generated by a finite set of reflections, typically
G=(rj|jeJ), withr; =7y, 4, and p(a;) = =2 .

Definition: the reflection group G, with the specified generators r;, is balanced if p;(ay) = 0
implies ¢i(a;) =0 for 5,k € J.

Examples: when G contains no transvections, in particular, if G is a group of isometries for
some non-singular orthogonal space V.

Definition. For G balanced the graph A(G) has node set J, distinct j, k € J are adjacent
whenever ¢;(ay) # 0. The |J| x |J| matrix N := [p;(a;)] is called a Cartan matriz for G (with
respect to the specified generating reflections; see [3, §1] for implications when K = R).
Remark: By attaching labels to nodes or branches we get Coxeter diagrams A. and their
various kin.

Our Standard Setup: J ={0,...,n— 1} and {aq,...,a, 1} is a basis for V.

Exercise (do for sure!) If, as above, {ao, ..., a,_1} is a basis for V, then G acts irreducibly on
V if and only if det(N) # 0 and A(G) is connected.

Coxeter Groups. An abstract Cozeter group I is defined through a special sort of presenta-
tion:
['= <P07---7Pn71 : (Pipj)pij = 17 ng;] gn_l% (1>

where p; = 1 and 2 < p;; = pji < oo for all i # j. A string Cozeter group has p;; = 2,
equivalently p; commuting with p;, whenever |i — j| > 2.

The standard real representation for the Coxeter group I': On real n-space V', with

basis ag, . .., a,_1, define a symmetric bilinear form x - y by setting
™ .o
a;-aj:=—2cos—, 0<,j<n—1L
Dij

Thus a? := a; - a; = 2 and rj(z) =  — (x - a;)a; is an isometric reflection on V.
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Theorem (Bourbaki, i.e. Tits?) [2, Ch. 5.3-5.4] The mapping p; — r; induces a faithful
representation

R:T'— G:=(ro,...,rn-1)

of I" in the orthogonal group O(V).
We may put I' aside and work instead with the linear Cozeter group G. (See [3, 4] for further
properties of more general linear Coxeter groups.)

Of course, G is balanced and therefore has a diagram A(G), from which we obtain the familiar
Coxeter diagram A.(G) for G (and for I') as follows: whenever p;; > 3 label the branch
connecting nodes ¢, j by p;;. (If p;; = 2, nodes i, j are non-adjacent. The very common label 3
is often suppressed.)

Example: dihedral groups I(q) of order 2¢ — symmetry group for ¢-gon {¢}

Example: group B, of order 2"n! for the n-cube {4,3,...,3}

Spherical Cases: G (~I') is finite if-f when x - y is positive definite ([2, Th. 6.4]). We may
call G an orthogonal group generated by reflections or even spherical, since it leaves invariant
the unit sphere S*! in V.

Irreducible spherical (hence finite) G ([1]): A, (n > 1), B, (n > 2), D, (n > 4), E, (n =
6,7,8), Fy, Hs, Hy, or I5(q) (dihedral of order 2¢).

See Table for Coxeter diagrams; convenient to use same label for group, diagram, root system,
depending on your focus.

Euclidean Cases: z -y positive semidefinite, with dim(radV') = 1; G (infinite) is of Euclidean
type; acts on affine Euclidean (n — 1)-space E"~1 [2, ch. 4].

Hyperbolic Cases: -y is non-singular with signature (++...+—); G (infinite) is of hyperbolic
type; acts on hyperbolic (n — 1)-space H"™! [2, §6.8-6.9].

References

[1] H. S. M. COXETER, Discrete groups generated by reflections, Ann. of Math., 35 (1934),
pp. H88-612.

2] J. E. HUMPHREYS, Reflection Groups and Cozeter Groups, Cambridge University Press,
Cambridge, UK, 1990.

[3] G. MAXWELL, On the crystallography of infinite Cozxeter groups, Math. Proc. Cambridge
Philos. Soc., 82 (1977), pp. 13-24.

[4] E. B. VINBERG, Discrete linear groups generated by reflections, Izv. Akad. Nauk SSSR Ser.
Mat. (=Math. USSR Izv. 5 (1971) 1083-1119), 35 (1971), pp. 1072-1112.

Barry Monson Lecture 2: Reflection Groups and Coxeter Groups Page 2 of 2



