Barry	Monson	Lecture 2:	Reflection	Groups and	Coxeter	Groups	November	2011
Durry	1110110011	Locouro 2.	100110001011	oroups and	COMOUNT	Groups	1101011001	2011

Seeking Balance: If $r_{\varphi,a}$, $r_{\psi,b}$ are reflections, and $\varphi(b) = 0 \neq \psi(a)$, then $r_{\psi,b}r_{\varphi,a}r_{\psi,b} = r_{\varphi,c}$, where $c = a + \psi(a)b$. Thus two (conjugate) reflections $r_{\varphi,a}$ and $r_{\varphi,c}$ share the same mirror but have independent roots (check this peculiarity).

Main Concern: a group $G \subseteq GL(V)$ generated by a finite set of reflections, typically

 $G = \langle r_j | j \in J \rangle$, with $r_j = r_{\varphi_j, a_j}$, and $\varphi(a_j) = -2$.

Definition: the reflection group G, with the specified generators r_j , is balanced if $\varphi_j(a_k) = 0$ implies $\varphi_k(a_j) = 0$ for $j, k \in J$.

Examples: when G contains no transvections, in particular, if G is a group of isometries for some non-singular orthogonal space V.

Definition. For G balanced the graph $\Delta(G)$ has node set J, distinct $j, k \in J$ are adjacent whenever $\varphi_j(a_k) \neq 0$. The $|J| \times |J|$ matrix $N := [\varphi_i(a_j)]$ is called a *Cartan matrix* for G (with respect to the specified generating reflections; see [3, §1] for implications when $\mathbb{K} = \mathbb{R}$). **Remark**: By attaching labels to nodes or branches we get Coxeter diagrams Δ_c and their various kin.

Our Standard Setup: $J = \{0, \ldots, n-1\}$ and $\{a_0, \ldots, a_{n-1}\}$ is a basis for V.

Exercise (do for sure!) If, as above, $\{a_0, \ldots, a_{n-1}\}$ is a basis for V, then G acts irreducibly on V if and only if $\det(N) \neq 0$ and $\Delta(G)$ is connected.

Coxeter Groups. An *abstract Coxeter group* Γ is defined through a special sort of presentation:

$$\Gamma = \langle \rho_0, \dots, \rho_{n-1} : (\rho_i \rho_j)^{p_{ij}} = 1, \quad 0 \leqslant i, j \leqslant n-1 \rangle, \tag{1}$$

where $p_{ii} = 1$ and $2 \leq p_{ij} = p_{ji} \leq \infty$ for all $i \neq j$. A string Coxeter group has $p_{ij} = 2$, equivalently ρ_i commuting with ρ_j , whenever $|i - j| \geq 2$.

The standard real representation for the Coxeter group Γ : On real *n*-space V, with basis a_0, \ldots, a_{n-1} , define a symmetric bilinear form $x \cdot y$ by setting

$$a_i \cdot a_j := -2\cos\frac{\pi}{p_{ij}}, \quad 0 \le i, j \le n-1.$$

Thus $a_j^2 := a_j \cdot a_j = 2$ and $r_j(x) = x - (x \cdot a_j)a_j$ is an isometric reflection on V.

Theorem (Bourbaki, i.e. Tits?) [2, Ch. 5.3-5.4] The mapping $\rho_j \mapsto r_j$ induces a faithful representation

$$R: \Gamma \to G := \langle r_0, \ldots, r_{n-1} \rangle$$

of Γ in the orthogonal group O(V).

We may put Γ aside and work instead with the *linear Coxeter group G*. (See [3, 4] for further properties of more general linear Coxeter groups.)

Of course, G is balanced and therefore has a diagram $\Delta(G)$, from which we obtain the familiar Coxeter diagram $\Delta_c(G)$ for G (and for Γ) as follows: whenever $p_{ij} \ge 3$ label the branch connecting nodes i, j by p_{ij} . (If $p_{ij} = 2$, nodes i, j are non-adjacent. The very common label 3 is often suppressed.)

Example: dihedral groups $I_2(q)$ of order 2q – symmetry group for q-gon $\{q\}$

Example: group B_n of order $2^n n!$ for the *n*-cube $\{4, 3, \ldots, 3\}$

Spherical Cases: $G (\simeq \Gamma)$ is finite if-f when $x \cdot y$ is positive definite ([2, Th. 6.4]). We may call G an orthogonal group generated by reflections or even spherical, since it leaves invariant the unit sphere \mathbb{S}^{n-1} in V.

Irreducible spherical (hence finite) G ([1]): A_n $(n \ge 1)$, B_n $(n \ge 2)$, D_n $(n \ge 4)$, E_n (n = 6,7,8), F_4 , H_3 , H_4 , or $I_2(q)$ (dihedral of order 2q).

See Table for Coxeter diagrams; convenient to use same label for group, diagram, root system, depending on your focus.

Euclidean Cases: $x \cdot y$ positive semidefinite, with dim(radV) = 1; G (infinite) is of Euclidean type; acts on affine Euclidean (n-1)-space \mathbb{E}^{n-1} [2, ch. 4].

Hyperbolic Cases: $x \cdot y$ is non-singular with signature $(++\ldots+-)$; *G* (infinite) is of *hyperbolic type*; acts on hyperbolic (n-1)-space \mathbb{H}^{n-1} [2, §6.8-6.9].

References

- H. S. M. COXETER, Discrete groups generated by reflections, Ann. of Math., 35 (1934), pp. 588–612.
- [2] J. E. HUMPHREYS, *Reflection Groups and Coxeter Groups*, Cambridge University Press, Cambridge, UK, 1990.
- [3] G. MAXWELL, On the crystallography of infinite Coxeter groups, Math. Proc. Cambridge Philos. Soc., 82 (1977), pp. 13–24.
- [4] E. B. VINBERG, Discrete linear groups generated by reflections, Izv. Akad. Nauk SSSR Ser. Mat. (=Math. USSR Izv. 5 (1971) 1083–1119), 35 (1971), pp. 1072–1112.