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Remarks.

1. Ay ~ Cy; Ay ~ I5(3); A3 =~ Ds is the tetrahedral reflection group [3, 3].
2. By ~ I4(4); Bs is the octahedral reflection group [4, 3].
3. D, has index 2 in B,,; Dy >~ Cy x (.

4. Hj is the icosahedral reflection group [5, 3]; we might say Hy = I5(5).

Here are the finite, irreducible unitary groups generated by reflections of period 2 (not already
on the above list of real forms). The diagrams incorporate different information (presentations
not simply of Coxeter type!):

Imprimitive Cases The group D, (m) = G(m,m,n), where m > 2, has order m"~'n! and gener-

alizes the Coxeter group of type D,,, which is actually isomorphic to D,,(2). The corresponding
root diagram
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is a variant of the Coxeter diagram and encodes the details of the essentially unique Hermitian
form left invariant by G = G(m, m,n) Here x,, is a primitive mth root of unity.

The other type of imprimitive group is B,(m) = G(m, % ,n), for even integers m > 2. This
generalization of the Coxeter group B, has order 2m" !nl. To generate B,(m) we usually
require n + 1 reflections, say 7o, ...,r,_1 corresponding to the n nodes in (1), together with
another reflection r_, whose node is attached in (1) as follows:
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However, when m = 2, the generator ry becomes superfluous and we do get B, ~ B, (2).

Finally we look at the primitive groups J5(4), J3(5), Ny, ENy, K5 and K4, whose root diagrams
appear in In the notation of we have J3(4) = [111%* J3(5) = [111°]*, Ny = [112)* K5 =
[212]% and Ky = [213]?; these groups require n generating reflections, whereas EN, requires
n+1(=5).
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Root Diagrams for the Remaining Irreducible, Primitive Unitary Groups Generated by
Reflections of Period 2.

Our set-up: z-y is a Hermitian form on complex n-space V. Thus z-y =7~ z; z-(ty) = t(x-y);
(tz) -y = t(x - y), for z,y € V, t € C, etc. The (involutory) unitary reflection r with root
acV\{o}is
2(a -

(a-2)

a-a

r(z) =z —

(For period m replace the ‘2’ by 1 — x, where x is a primitive mth root of unity.)

In a root diagram above, the nodes correspond to a normalized basis ag,...,a,_1 of unitary
n-space V. The Hermitian form is defined by its Gram matrix for this basis. Thus all a;-a; =1
and a; - a; = 0 if nodes 7, j are non-adjacent. Finally, when there is an arrow from node ¢ to
node j with branch label ¢ # 0, then a; - a; =t (so a; - a; = t). Branches with real labels need
not be directed.

The corresponding unitary reflection group G = (ro, ..., r,_1), where r; has root a;. Groups
EN, and B, (m), for m = 2k > 4, require one extra generator.
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