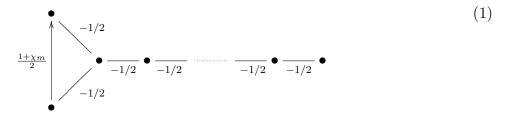
$\Delta_c(G)$	G	G
lack q	$I_2(q), q \geqslant 2$ (dihedral)	2q
$ \begin{array}{cccc} \bullet_{\overline{3}} & \bullet_{\overline{3}} & \bullet & -\cdots & \bullet_{\overline{3}} & \bullet \\ (n \geqslant 1 \text{ nodes}) & & & & & \\ \end{array} $	$A_n \simeq S_{n+1}$ (symmetric gp)	(n+1)!
$ \frac{\bullet_{\overline{4}} \bullet_{\overline{3}} \bullet - \dots - \bullet_{\overline{3}} \bullet}{(n \geqslant 2 \text{ nodes})} $	$B_n \simeq B_n(2)$	$2^n \cdot n!$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$D_n \simeq D_n(2)$	$2^{n-1} \cdot n!$
$\frac{(n \geqslant 2 \text{ nodes})}{\bullet {5} \bullet {3} \bullet}$		
\bullet $\overline{}_{5}$ \bullet $\overline{}_{3}$ \bullet	$H_3 \simeq \text{Alt}_5 \times C_2$ (icosahedral)	120
\bullet $\overline{}$ \bullet $\overline{}$ \bullet $\overline{}$ \bullet	F_4	1152
<u> </u>	H_4	$14400 = 120^2$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E_6	$51840 = 72 \cdot 6!$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E_7	$2903040 = 8 \cdot 72 \cdot 7!$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E_8	$696729600 = 240 \cdot 72 \cdot 8!$


Coxeter Diagrams $\Delta_c(G)$ for Irreducible Finite Coxeter Groups G.

Remarks.

- 1. $A_1 \simeq C_2$; $A_2 \simeq I_2(3)$; $A_3 \simeq D_3$ is the tetrahedral reflection group [3,3].
- 2. $B_2 \simeq I_2(4)$; B_3 is the octahedral reflection group [4, 3].
- 3. D_n has index 2 in B_n ; $D_2 \simeq C_2 \times C_2$.
- 4. H_3 is the icosahedral reflection group [5,3]; we might say $H_2 = I_2(5)$.

Here are the finite, irreducible *unitary* groups generated by reflections of period 2 (not already on the above list of <u>real</u> forms). The diagrams incorporate different information (presentations not simply of Coxeter type!):

Imprimitive Cases The group $D_n(m) = G(m, m, n)$, where $m \ge 2$, has order $m^{n-1}n!$ and generalizes the Coxeter group of type D_n , which is actually isomorphic to $D_n(2)$. The corresponding root diagram

is a variant of the Coxeter diagram and encodes the details of the essentially unique Hermitian form left invariant by G = G(m, m, n) Here χ_m is a primitive mth root of unity.

The other type of imprimitive group is $B_n(m) = G(m, \frac{m}{2}, n)$, for even integers $m \ge 2$. This generalization of the Coxeter group B_n has order $2m^{n-1}n!$. To generate $B_n(m)$ we usually require n+1 reflections, say r_0, \ldots, r_{n-1} corresponding to the n nodes in (1), together with another reflection r_- , whose node is attached in (1) as follows:

However, when m=2, the generator r_0 becomes superfluous and we do get $B_n \simeq B_n(2)$.

Finally we look at the *primitive* groups $J_3(4)$, $J_3(5)$, N_4 , EN_4 , K_5 and K_6 , whose root diagrams appear in In the notation of we have $J_3(4) = [1 \ 1 \ 1^4]^4$, $J_3(5) = [1 \ 1 \ 1^5]^4$, $N_4 = [1 \ 1 \ 2]^4$, $K_5 = [2 \ 1 \ 2]^3$ and $K_6 = [2 \ 1 \ 3]^3$; these groups require n generating reflections, whereas EN_4 requires n + 1 = 5.

$\Delta_c(G)$	G	G
•	$J_3(4) \simeq [111^4]^4$	336
-1/2 $-1/2$		
$\bullet \xrightarrow{\alpha/2} \bullet$		
where $\alpha^2 - \alpha + 2 = 0$	I (5) a. [1114]5	2160
-1/2 $-1/2$	$J_3(5) \simeq [111^4]^5$	2160
$\frac{-\omega\tau/2}{-\omega\tau/2}$		
where $\omega = (-1 + i\sqrt{3})/2$, $\tau = (1 + \sqrt{5})/2$	$N_4 \simeq [112]^4$	$64 \cdot 5!$
-1/2 $-1/2$	$[V_4 \stackrel{\frown}{=} [112]]$	04 · 5:
$\bullet \xrightarrow{-1/2} \bullet$		
$\bullet \xrightarrow{(1-\imath)/2} \bullet \longrightarrow \bullet$		
	77 [242]9	
$-1/2$ $\left\langle \begin{array}{c} \bullet \\ -1/2 \end{array} \right\rangle$	$K_5 \simeq [212]^3$	$72 \cdot 6!$
$ \begin{array}{c c} -1/2 & -1/2 \\ \hline & -1/2 & \hline & -1/2 \\ \hline & -1/2 \\ \hline & & -$		
$\bullet \xrightarrow{1/2} \bullet -\omega/2 \qquad \bullet \xrightarrow{1/2} \bullet$		
1/0 / 1/0	$K_6 \simeq [213]^3$	$108 \cdot 9!$
-1/2 $-1/2$		
$\bullet \xrightarrow{-1/2} \bullet \xrightarrow{-1/2} \bullet \xrightarrow{-\omega/2} \bullet \xrightarrow{-1/2} \bullet$		
,		

Root Diagrams for the Remaining Irreducible, Primitive Unitary Groups Generated by Reflections of Period 2.

Our set-up: $x \cdot y$ is a Hermitian form on complex n-space V. Thus $x \cdot y = \overline{y \cdot x}$; $x \cdot (ty) = t(x \cdot y)$; $(tx) \cdot y = \overline{t}(x \cdot y)$, for $x, y \in V$, $t \in \mathbb{C}$, etc. The (involutory) unitary reflection r with root $a \in V \setminus \{o\}$ is

$$r(x) = x - \frac{2(a \cdot x)}{a \cdot a} a.$$

(For period m replace the '2' by $1-\chi$, where χ is a primitive mth root of unity.)

In a root diagram above, the nodes correspond to a normalized basis a_0, \ldots, a_{n-1} of unitary n-space V. The Hermitian form is defined by its Gram matrix for this basis. Thus all $a_j \cdot a_j = 1$ and $a_i \cdot a_j = 0$ if nodes i, j are non-adjacent. Finally, when there is an arrow from node i to node j with branch label $t \neq 0$, then $a_i \cdot a_j = t$ (so $a_j \cdot a_i = \overline{t}$). Branches with real labels need not be directed.

The corresponding unitary reflection group $G = \langle r_0, \dots, r_{n-1} \rangle$, where r_j has root a_j . Groups EN_4 and $B_n(m)$, for $m = 2k \geqslant 4$, require one extra generator.