Barry Monson \quad Lecture 3: Crystallographic Coxeter Groups \quad November 2011

Recap: The general abstract Coxeter group with n generators is

$$
\Gamma=\left\langle\rho_{0}, \ldots, \rho_{n-1}:\left(\rho_{i} \rho_{j}\right)^{p_{i j}}=1, \quad 0 \leqslant i, j \leqslant n-1\right\rangle,
$$

where $p_{i i}=1$ and $2 \leqslant p_{i j}=p_{j i} \leqslant \infty$ for all $i \neq j$. The representation $R: \Gamma \rightarrow G$ is faithful. Recall V has real basis a_{0}, \ldots, a_{n-1} and symmetric bilinear form $x \cdot y$ specified by setting $a_{i} \cdot a_{j}:=-2 \cos \pi / p_{i j}$. Then ρ_{j} can be identified with the isometric reflection r_{j}, where $r_{j}(x)=x-\left(x \cdot a_{j}\right) a_{j}$. Thus $G=\left\langle r_{0}, \ldots, r_{n-1}\right\rangle$ is a subgroup of $O(V)$.

Definition. Γ is crystallographic (w.r.t. R) if G leaves invariant some lattice Λ (i.e. \mathbb{Z}-module spanned by some basis of V.)

Now what? As in $[4, \S 1]$ look at (the subgroup!) $\Lambda_{i}:=\Lambda \cap \mathbb{R} a_{i}$. Then $\Lambda_{i}=\mathbb{Z} b_{i}$, where $b_{i}=t_{i} a_{i}$, for some real $t_{i} \geqslant 0$. But all $t_{i}>0$ and $\left\{b_{0}, \ldots, b_{n-1}\right\}$ is a (new) root basis for V.

The root lattice $Q:=\sum_{i=0}^{n-1} \mathbb{Z} b_{i}$ is a G-invariant sublattice of Λ. (Suppress dependence on Λ.) In fact,

$$
r_{i}\left(b_{j}\right)=b_{j}+m_{i j} b_{i}
$$

for Cartan integers $m_{i j}=-t_{j}\left(a_{i} \cdot a_{j}\right) / t_{i}$. Furthermore, we can interpret G, hence also the Coxeter group Γ, as a subgroup of $G L_{n}(\mathbb{Z})$ (= invertible $n \times n$ integral matrices). Modulo $p>0$ we get a finite group G^{p}.

Exercises: (a) Check that $\left[m_{i j}\right]$ is the Cartan matrix for this new representation of Γ.
(b) Check that r_{i} and $r_{j}(i \neq j)$ commute if-f $p_{i j}=2$ if- $\mathrm{f} m_{i j}=m_{j i}=0$.

Example: the "usual" octahedral group $\Gamma=B_{3}$ with $\Delta_{c}=\bullet \cdot \frac{{ }_{4}}{\bullet}{ }_{3} \bullet$.
(a) The invariant lattice $\Lambda=\mathbb{Z}^{3}$ returns $Q=\Lambda$ and modified diagram $\Delta=\stackrel{1}{\bullet}-\stackrel{2}{\bullet}_{\bullet}^{\bullet} \stackrel{2}{\bullet}$.
(b) Let Θ be the face-centred cubic lattice (integral vectors with even sum [5, 6D]). But rescaling is OK! $\Lambda^{\prime}=\frac{1}{\sqrt{2}} \Theta$ is also G-invariant and gives a new root lattice Q^{\prime} with modified diagram $\Delta^{\prime}=\stackrel{2}{\bullet}-\stackrel{1}{\bullet}-\stackrel{1}{\bullet}$.

Remarks: G may admit many essentially distinct invariant lattices. However, when the form $x \cdot y$ on V is non-singular, and in particular when G is finite, all G-invariant lattices can, in principle, be classified in a natural way ($[1,3,4]$).

The general crystallographic Coxter group Γ : All $m_{i i}=-2$; and $m_{i j} \geqslant 0$ for $i \neq j$. We can arrange $m_{i j} \leqslant m_{j i}$ in

$$
m_{i j} m_{j i}=\left(a_{i} \cdot a_{j}\right)^{2}=4 \cos ^{2}\left(\pi / p_{i j}\right) \in \mathbb{Z}
$$

Data on dihedral subgroups $\left\langle r_{i}, r_{j}\right\rangle$

$m_{i j}$	$m_{j i}$	$p_{i j}$	$\begin{aligned} & t_{i} / t_{j}= \\ & \sqrt{m_{j i} / m_{i j}} \end{aligned}$	Subgraph on nodes i, j	Invar. quad. form
0	0	2	undet'd	$\stackrel{t}{\bullet}$ -	$s x_{i}^{2}+t x_{j}^{2}$
1	1	3	1	$\stackrel{s}{\bullet}$	$s\left(x_{i}^{2}-x_{i} x_{j}+x_{j}^{2}\right)$
1	2	4	$\sqrt{2}$	${ }^{2 \cdot s}{ }_{\bullet}^{\text {c }}$	$s\left(2 x_{i}^{2}-2 x_{i} x_{j}+x_{j}^{2}\right)$
1	3	6	$\sqrt{3}$	${ }^{3.5}$	$s\left(3 x_{i}^{2}-3 x_{i} x_{j}+x_{j}^{2}\right)$
1	4	∞	2	${ }^{4 .}{ }^{\text {c }}$	$s\left(4 x_{i}^{2}-4 x_{i} x_{j}+x_{j}^{2}\right)$
2	2	∞	1	$\stackrel{s}{\bullet}$	$s\left(x_{i}-x_{j}\right)^{2}$

Note: s, t positive integers. We will mainly ignore the last line, which has minor uses.
Corollary - crystallographic restriction: If Γ is crystallographic, all basic rotation periods (=branch labels in Coxeter diagram $\Delta_{c}(\Gamma)$) must be $3,4,6$ or ∞ (or 2, for no branch).

The converse holds if $\Delta_{c}(\Gamma)$ is a tree, in particular a string diagram. See notes for full story, also Exercise 2 at top of page 48 in notes.

The new diagrams $\Delta(G)[6,2]$. The new representation of Γ as G in $G L_{n}(\mathbb{Z})$ can be reconstructed from the (new) Gram matrix $B=\left[b_{i} \cdot b_{j}\right]$, which in turn we encode in a new diagram $\Delta(G)$. Take the Coxeter diagram $\Delta_{c}(G)$ and label each node i by $b_{i}^{2}=b_{i} \cdot b_{i}=2 t_{i}^{2}$. If nodes i, j connected by a branch labelled $p_{i j}$, then the ratio of larger to smaller node label is say $b_{i}^{2} / b_{j}^{2}=1,2,3$ or 4 , as determined from the above chart. Now we can erase the branch labels. And on any connected component of $\Delta_{c}(G)$ we can rescale node labels so that such labels are positive integers s, t etc. (see the chart). Finally we can divide all such labels by their gcd.

Summary description of $\Delta(G)$: Node i is labelled b_{i}^{2}; and (a fortuitous artefact), for nodes $i \neq j$ joined by $\lambda_{i j}$ branches, $b_{i} \cdot b_{j}=\frac{-\lambda_{i j}}{2} \max \left\{b_{i i}, b_{j j}\right\}$. From this it is easy to reconstruct the integral matrix representing r_{i} :

$$
\begin{aligned}
r_{i}\left(b_{i}\right) & =-b_{i} \\
r_{i}\left(b_{j}\right) & =b_{j}+\lambda_{i j} \max \left\{1, b_{j j} / b_{i i}\right\} b_{i}, \quad(i \neq j)
\end{aligned}
$$

The determinant of $B=\left[b_{i} \cdot b_{j}\right]$ equals the discriminant $\operatorname{disc}(V)$ of the orthogonal geometry V. This calculation is simplified if $\Delta(G)$ has a univalent node j, say adjacent to node k. If $B_{[j]}$ (resp. $B_{[j, k]}$) denotes the submatrix of B obtained by deleting row and column j (resp. j, k), then

$$
\begin{equation*}
\operatorname{det}(B)=b_{j j} \operatorname{det}\left(B_{[j]}\right)-b_{j k}^{2} \operatorname{det}\left(B_{[j, k]}\right) \tag{1}
\end{equation*}
$$

(Expand along row j [2, p.426].)

Example: the group G with Coxeter diagram

is crystallographic and acts naturally on \mathbb{H}^{2}. The essentially distinct root lattices (and representations of G in $G L_{3}(\mathbb{Z})$) are described by:

$$
B=\left[\begin{array}{rrr}
6 & -3 & 0 \\
-3 & 3 & -3 / 2 \\
0 & -3 / 2 & 1
\end{array}\right]
$$

and associated quadratic form

$$
f=6 x_{0}^{2}-6 x_{0} x_{1}+3 x_{1}^{2}-3 x_{1} x_{2}+x_{2}^{2}
$$

Taking $j=0, k=1$, we note that $\operatorname{det}\left(B_{[0]}\right)=3(1)-\left(-\frac{3}{2}\right)^{2}=\frac{3}{4}$, so that

$$
\begin{equation*}
\operatorname{det}(B)=6\left(\frac{3}{4}\right)-(-3)^{2}(1)=-\frac{9}{2} \tag{2}
\end{equation*}
$$

The generating reflections are

$$
r_{0}=\left[\begin{array}{rrr}
-1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], r_{1}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
2 & -1 & 1 \\
0 & 0 & 1
\end{array}\right], r_{2}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 3 & -1
\end{array}\right] .
$$

But what on earth group do we get if we take these modulo the prime p ?

References

[1] N. Broderick and G. Maxwell, The crystallography of coxeter groups II, J. Algebra, 44 (1977), pp. 290-318.
[2] H. S. M. Coxeter, Extreme forms, Canad. J. Math., 3 (1951), pp. 391-441.
[3] G. Maxwell, The crystallography of Coxeter groups, J. Algebra, 35 (1975), pp. 159-177.
[4] _—, On the crystallography of infinite Coxeter groups, Math. Proc. Cambridge Philos. Soc., 82 (1977), pp. 13-24.
[5] P. McMullen and E. Schulte, Abstract Regular Polytopes, vol. 92 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, UK, 2002.
[6] B. Monson, Simplicial quadratic forms, Canad. J. Math., 35 (1983), pp. 101-116.

