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Barry Monson Lecture 3: Crystallographic Coxeter Groups November 2011

Recap: The general abstract Coxeter group with n generators is

F:<p07”'7pn—1 : (Pzpj)p”: ) Oglajgn_l%
where p; = 1 and 2 < p;; = pji < oo for all ¢ # j. The representation R : I' = G is
faithful. Recall V' has real basis ay,...,a,_1 and symmetric bilinear form x - y specified by
setting a; - aj := —2cos7/p;;. Then p; can be identified with the isometric reflection r;, where

ri(x) =z — (z-aj)a;. Thus G = (rg,...,r,—1) is a subgroup of O(V).

Definition. I is crystallographic (w.r.t. R) if G leaves invariant some lattice A (i.e. Z-module
spanned by some basis of V.)

Now what? As in [4, §1] look at (the subgroup!) A; := AN Ra;. Then A; = Zb;, where
b; = t;a;, for some real ¢; > 0. But all ¢; > 0 and {bg,...,b,_1} is a (new) root basis for V.

The root lattice Q := Z;:Ol Zb; is a G-invariant sublattice of A. (Suppress dependence on A.)
In fact,
7"@'<bj) = bj -+ mwbz

for Cartan integers m;; = —t;(a; - a;)/t;. Furthermore, we can interpret G, hence also the
Coxeter group I', as a subgroup of GL,(Z) (= invertible n x n integral matrices). Modulo
p > 0 we get a finite group G”.

Exercises: (a) Check that [m;;] is the Cartan matrix for this new representation of I".
(b) Check that r; and r; (¢ # j) commute if-f p;; = 2 if-f m;; = my; = 0.

Example: the “usual” octahedral group I' = B; with A, = e——e——ae.

(a) The invariant lattice A = Z3 returns @ = A and modified diagram A = o oo

(b) Let © be the face-centred cubic lattice (integral vectors with even sum [5, 6D]). But rescaling
is OK! A’ = \/Li@ is also G-invariant and gives a new root lattice )’ with modified diagram

2 1 1
AN =0 — o — o,

Remarks: GG may admit many essentially distinct invariant lattices. However, when the form
x -y on V is non-singular, and in particular when G is finite, all G-invariant lattices can, in
principle, be classified in a natural way ([1, 3, 4]).
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The general crystallographic Coxter group I': All m;; = —2; and m;; > 0 for ¢ # j. We
can arrange m;; < mgj; in
myg;Mmj; = (ai . CLj)Q = 4COSQ(7T/pZ'j) S Z.

Data on dihedral subgroups (r;,7;)

mij | Myji | Dij ti/t; = Subgraph on Invar.

V/myi/mi; | nodes i, j quad. form

0] 0 |2 undet’d o o sy + ta

1 1 | 3 1 o~ o s(x} — zix; + 7)

1| 2|4 V2 < (227 — 2wx; 4 23)

1] 316 V3 oo | (322 — 3, +a?)

1 | 4 | o0 2 [ s(4xy — 4wz 4 23)

2 2 | o 1 —s s(z; — x;)?

Note: s,t positive integers. We will mainly ignore the last line, which has minor uses.

Corollary - crystallographic restriction: If I' is crystallographic, all basic rotation periods
(=branch labels in Coxeter diagram A.(I')) must be 3,4,6 or oo (or 2, for no branch).

The converse holds if A.(T") is a tree, in particular a string diagram. See notes for full story,
also Exercise 2 at top of page 48 in notes.

The new diagrams A(G) [6, 2]. The new representation of I' as G in GL,(Z) can be recon-
structed from the (new) Gram matrix B = [b; - b;], which in turn we encode in a new diagram
A(G). Take the Coxeter diagram A.(G) and label each node i by b? = b; - b; = 2t7. If nodes
i,7 connected by a branch labelled p;;, then the ratio of larger to smaller node label is say
b2/ b? =1,2,3 or 4, as determined from the above chart. Now we can erase the branch labels.
And on any connected component of A.(G) we can rescale node labels so that such labels are
positive integers s, t etc. (see the chart). Finally we can divide all such labels by their ged.

Summary description of A(G): Node i is labelled b7; and (a fortuitous artefact), for nodes
i # j joined by A;; branches, b; - b; = 7;‘“
integral matrix representing r;:

max{b;;, b;; }. From this it is easy to reconstruct the

ri(b;) = b;+ \jjmax{1,b,;/bi;}b;, (i # j)

The determinant of B = [b; - b;] equals the discriminant disc(V') of the orthogonal geometry
V. This calculation is simplified if A(G) has a univalent node j, say adjacent to node k. If By
(resp. Byjx) denotes the submatrix of B obtained by deleting row and column j (resp. j,k),
then

det(B) = bj; det(By;) — bjy det(Byjx). (1)

(Expand along row j [2, p.426].)
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Example: the group G with Coxeter diagram

4 6

is crystallographic and acts naturally on H?. The essentially distinct root lattices (and repre-
sentations of G in GL3(Z)) are described by:

1 2 6 3 6 2

[ ] [ ] [ ] [ ] [ ] [ ]

2 1 3 6 3 1

[ ] [ ] [ ] [ ] [ ] [ ]

For example, the diagram e — e — o from above has Gram matrix

6 -3 0
B=| -3 3 —=3/2
0 —-3/2 1

and associated quadratic form

f =613 — 6z + 327 — 31179 + 75 .

Taking j = 0,k = 1, we note that det(Bp)) = 3(1) — (—2)? = 2, so that
3 9
det(B) = 6(3) — (~3/°(1) = — . 2)
The generating reflections are
-1 10 1 00 10 0
ro = 01 0f,ri=1]2 -1 1/|,mm=101 0
00 1 0 01 0 3 —1

But what on earth group do we get if we take these modulo the prime p?
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