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Barry Monson Lecture 3: Crystallographic Coxeter Groups November 2011

Recap: The general abstract Coxeter group with n generators is

Γ = 〈ρ0, . . . , ρn−1 : (ρiρj)
pij = 1, 0 6 i, j 6 n− 1〉,

where pii = 1 and 2 6 pij = pji 6 ∞ for all i 6= j. The representation R : Γ → G is
faithful. Recall V has real basis a0, . . . , an−1 and symmetric bilinear form x · y specified by
setting ai · aj := −2 cos π/pij. Then ρj can be identified with the isometric reflection rj, where
rj(x) = x− (x · aj)aj. Thus G = 〈r0, . . . , rn−1〉 is a subgroup of O(V ).

Definition. Γ is crystallographic (w.r.t. R) if G leaves invariant some lattice Λ (i.e. Z-module
spanned by some basis of V .)

Now what? As in [4, §1] look at (the subgroup!) Λi := Λ ∩ Rai. Then Λi = Zbi, where
bi = tiai, for some real ti > 0. But all ti > 0 and {b0, . . . , bn−1} is a (new) root basis for V .

The root lattice Q :=
∑n−1

i=0 Zbi is a G-invariant sublattice of Λ. (Suppress dependence on Λ.)
In fact,

ri(bj) = bj +mijbi

for Cartan integers mij = −tj(ai · aj)/ti. Furthermore, we can interpret G, hence also the
Coxeter group Γ, as a subgroup of GLn(Z) (= invertible n × n integral matrices). Modulo
p > 0 we get a finite group Gp.

Exercises: (a) Check that [mij] is the Cartan matrix for this new representation of Γ.

(b) Check that ri and rj (i 6= j) commute if–f pij = 2 if–f mij = mji = 0.

Example: the “usual” octahedral group Γ = B3 with ∆c = •
4

•
3

•.

(a) The invariant lattice Λ = Z3 returns Q = Λ and modified diagram ∆ =
1• 2• 2•.

(b) Let Θ be the face-centred cubic lattice (integral vectors with even sum [5, 6D]). But rescaling
is OK! Λ′ = 1√

2
Θ is also G-invariant and gives a new root lattice Q′ with modified diagram

∆′ =
2• 1• 1•.

Remarks: G may admit many essentially distinct invariant lattices. However, when the form
x · y on V is non-singular, and in particular when G is finite, all G–invariant lattices can, in
principle, be classified in a natural way ([1, 3, 4]).
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The general crystallographic Coxter group Γ: All mii = −2; and mij > 0 for i 6= j. We
can arrange mij 6 mji in

mijmji = (ai · aj)2 = 4 cos2(π/pij) ∈ Z.

Data on dihedral subgroups 〈ri, rj〉

mij mji pij ti/tj = Subgraph on Invar.√
mji/mij nodes i, j quad. form

0 0 2 undet’d
s• t• sx2

i + tx2
j

1 1 3 1
s•−−−s• s(x2

i − xixj + x2
j)

1 2 4
√
2

2s•−−−s• s(2x2
i − 2xixj + x2

j)

1 3 6
√
3

3s•−−−s• s(3x2
i − 3xixj + x2

j)

1 4 ∞ 2
4s•−−−s• s(4x2

i − 4xixj + x2
j)

2 2 ∞ 1
s•===s• s(xi − xj)

2

Note: s, t positive integers. We will mainly ignore the last line, which has minor uses.

Corollary - crystallographic restriction: If Γ is crystallographic, all basic rotation periods
(=branch labels in Coxeter diagram ∆c(Γ)) must be 3, 4, 6 or ∞ (or 2, for no branch).

The converse holds if ∆c(Γ) is a tree, in particular a string diagram. See notes for full story,
also Exercise 2 at top of page 48 in notes.

The new diagrams ∆(G) [6, 2]. The new representation of Γ as G in GLn(Z) can be recon-
structed from the (new) Gram matrix B = [bi · bj], which in turn we encode in a new diagram
∆(G). Take the Coxeter diagram ∆c(G) and label each node i by b2i = bi · bi = 2t2i . If nodes
i, j connected by a branch labelled pij, then the ratio of larger to smaller node label is say
b2i /b

2
j = 1, 2, 3 or 4, as determined from the above chart. Now we can erase the branch labels.

And on any connected component of ∆c(G) we can rescale node labels so that such labels are
positive integers s, t etc. (see the chart). Finally we can divide all such labels by their gcd.

Summary description of ∆(G): Node i is labelled b2i ; and (a fortuitous artefact), for nodes

i 6= j joined by λij branches, bi · bj = −λij

2
max{bii, bjj}. From this it is easy to reconstruct the

integral matrix representing ri:

ri(bi) = −bi

ri(bj) = bj + λij max{1, bjj/bii}bi , (i 6= j)

The determinant of B = [bi · bj] equals the discriminant disc(V ) of the orthogonal geometry
V . This calculation is simplified if ∆(G) has a univalent node j, say adjacent to node k. If B[j]

(resp. B[j,k]) denotes the submatrix of B obtained by deleting row and column j (resp. j, k),
then

det(B) = bjj det(B[j])− b2jk det(B[j,k]). (1)

(Expand along row j [2, p.426].)
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Example: the group G with Coxeter diagram

•
4

•
6

•

is crystallographic and acts naturally on H2. The essentially distinct root lattices (and repre-
sentations of G in GL3(Z)) are described by:

1• 2• 6• 3• 6• 2•

2• 1• 3• 6• 3• 1•

For example, the diagram
6• 3• 1• from above has Gram matrix

B =

 6 −3 0
−3 3 −3/2
0 −3/2 1


and associated quadratic form

f = 6x2
0 − 6x0x1 + 3x2

1 − 3x1x2 + x2
2 .

Taking j = 0, k = 1, we note that det(B[0]) = 3(1)− (−3
2
)2 = 3

4
, so that

det(B) = 6(
3

4
)− (−3)2(1) = −9

2
. (2)

The generating reflections are

r0 =

 −1 1 0
0 1 0
0 0 1

 , r1 =

 1 0 0
2 −1 1
0 0 1

 , r2 =

 1 0 0
0 1 0
0 3 −1

 .

But what on earth group do we get if we take these modulo the prime p?
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