Barry Monson Lecture 6:(Quasi)crystallographic groups, τ and the 11-cell November 2011

Idea: admit periods 5 and 10 to the crystallographic options $\{2,3,4,6, \infty\}$ by letting the golden ratio $\tau:=(1+\sqrt{5}) / 2$ become an integer. (τ is the positive root of $\tau^{2}=\tau+1$.)

Recall for crystallographic G that $4 \cos ^{2}\left(\pi / p_{i j}\right)=m_{i j} m_{j i}$, a (rational) integer. Compare this with $\cos (\pi / 5)=\tau / 2$, so that $4 \cos ^{2}(\pi / 5)=\tau^{2}=\tau+1$ and $4 \cos ^{2}(\pi / 10)=\tau+2$. If we allow such node labels, then the rotational periods 5 and 10 for $r_{i} r_{j}$ are induced by the diagrams

respectively, where now we allow rescaling of nodes by any 'integer' $s \in \mathbb{D}$ or its inverse:
Some Properties of the domain $\mathbb{D}:=\mathbb{Z}[\tau]=\{a+b \tau: a, b \in \mathbb{Z}\}$, which is the ring of all algebraic integers in the field $\mathbb{Q}(\sqrt{5})$.

1. The non-trivial field automorphism mapping $\sqrt{5} \mapsto-\sqrt{5}$ induces a ring automorphism ' $: \mathbb{D} \rightarrow \mathbb{D}$ (conjugation). Thus $(a+b \tau)^{\prime}=(a+b)-b \tau$. In particular, $\tau^{\prime}=1-\tau=-\tau^{-1}$.
2. $z=a+b \tau$ has (multiplicative) norm $N(z):=z z^{\prime}=a^{2}+a b-b^{2}$. And \mathbb{D} is a Euclidean domain, with a division algorithm based on $|N(z)|$.
3. The set of units in \mathbb{D} is $\left\{ \pm \tau^{n}: n \in \mathbb{Z}\right\}=\{u \in \mathbb{D}: N(u)= \pm 1\}$. If f_{n} is the nth Fibonacci number, taking $f_{-1}=1$ and $f_{0}=0$, then for all $n \in \mathbb{Z}$

$$
\tau^{n}=f_{n-1}+f_{n} \tau
$$

4. Recall that integers $z, w \in \mathbb{D}$ are associates if $z=u w$ for some unit u. Up to associates, the primes $\pi \in \mathbb{D}$ can be classified as follows:
(a) the prime $\pi=\sqrt{5}=2 \tau-1$, which is self-conjugate (up to associates: $\pi^{\prime}=-\pi$);
(b) rational primes $\pi=p \equiv \pm 2 \bmod 5$, also self-conjugate;
(c) primes $\pi=a+b \tau$, for which $|N(\pi)|$ equals a rational prime $q \equiv \pm 1 \bmod 5$. In this case, the conjugate prime $\pi^{\prime}=(a+b)-b \tau$ is not an associate of π.

New dihedral groups. You can check directly that the pentagonal group $H_{2}=I_{2}(5)$ really does come from the diagram ${ }_{\bullet}^{1} \quad \tau^{2}$ and that the decagonal group $I_{2}(10)$ comes from ${ }_{\bullet}^{1}{ }^{(\tau+2)}$. Furthermore, any 'quasicrystallographic' Coxeter group G with such a node-labelled diagram can be represented as a subgroup of $G L_{n}(\mathbb{D})$, through the action of G on the \mathbb{D}-module $\oplus_{j} \mathbb{D} b_{j}$.

Example. $G=[3,5,3]$ is a subgroup of $O(V)$, where the real 4 -space V is equipped with a Lorentzian form $x \cdot y$ of signature $(+++-)$. Thus G also acts naturally on \mathbb{H}^{3} and yields, for example, the regular icosahedral tessellation $\{3,5,3\}$ of hyperbolic space. Since τ^{2} is a unit, there is essentially only one choice of diagram, namely

The discriminant is

$$
\operatorname{disc}(V)=-\frac{1}{16}(2+5 \tau) \sim-(2+5 \tau)
$$

where $\delta:=-(2+5 \tau)$ has norm -11 . Thus δ is prime in \mathbb{D}.
Now consider any prime $\pi \in \mathbb{D}$. We can show that $G^{\pi}=\left\langle r_{0}, r_{1}, r_{2}, r_{3}\right\rangle^{\pi}$ is a string C-group, with regular 4-polytope \mathcal{P}^{π}.

The subgroup $G_{3}^{\pi}=\left\langle r_{0}, r_{1}, r_{2}\right\rangle^{\pi}$ is obviously some quotient of the spherical group [3, 5] $\simeq H_{3}$. After reduction modulo any prime π, even for associates of 2 , the reflections r_{j} still have period 2. And consider

$$
z:=\left(r_{0} r_{1} r_{2}\right)^{5}=\left[\begin{array}{cccc}
-1 & 0 & 0 & \tau^{4} \tag{1}\\
0 & -1 & 0 & 2 \tau^{4} \\
0 & 0 & -1 & 3 \tau^{2} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Since τ^{4} is a unit, $r_{0} r_{1} r_{2}$ still has period 10 in G^{π}. Thus $\left\langle r_{0}, r_{1}, r_{2}\right\rangle^{\pi} \simeq[3,5]$ and dually $\left\langle r_{1}, r_{2}, r_{3}\right\rangle^{\pi} \simeq[5,3]$.

Netx we emply [4, Th. 4.2], which essentially says that so long as (say) the facet group G_{3}^{π} is a Coxeter group of spherical type and the vertex-figure group G_{3}^{π} is any string C-group, then G^{π} itself must be a string C-group. The key step in proving this is to show that the orbit of $\mu_{0}:=[1,0,0,0]$ under the right action of the matrix group $\left\langle r_{0}, r_{1}, r_{2}\right\rangle$ has the same size modulo π as in characteristic 0 , namely 12 . (These row vectors correspond naturally to the vertices of the base icosahedron in $\{3,5,3\}$.) This is a routine check, so we get

Proposition 0.1. Let $G=[3,5,3]$. For any prime $\pi \in \mathbb{D}$, the group $G^{\pi}=\left\langle r_{0}, r_{1}, r_{2}, r_{3}\right\rangle^{\pi}$ is a finite string C-group. The corresponding finite regular polytope \mathcal{P}^{π} is self-dual and has icosahedral facets $\{3,5\}$ and dodecahedral vertex figures $\{5,3\}$.

A more detailed description of G^{π} depends on the nature of the prime π. In all cases the underlying finite field $\mathbb{K}:=\mathbb{D} /(\pi)$ has order $|N(\pi)|$, and G^{π} acts as an orthogonal group on a 4-dimensional vector space V over \mathbb{K}.

Case 1: $\pi=2$. Here an easy calculation using GAP confirms that G^{π} is the orthogonal group $O\left(4,2^{2},-1\right)$ with Witt index 1 over $\mathbb{K}=G F\left(2^{2}\right)$. Since $\left|G^{2}\right|=8160$, the polytope \mathcal{P}^{2} has 68 vertices and 68 icosahedral facets.

Case 2: $\pi=\sqrt{5}=2 \tau-1$. Here $\left|\pi \pi^{\prime}\right|=5 \equiv 0 \bmod \pi$, so that the discriminant $\delta=-(2+5 \tau) \equiv$ $3 \bmod \pi$, which is non-square in $\mathbb{K}=G F(5)$. Thus $\varepsilon=-1$ and $G^{\pi}=O_{1}(4,5,-1)$ has order 15600.

Case 3: π is an associate of an odd rational prime $p \equiv \pm 2 \bmod 5 . \quad$ Now $G^{p}=O_{1}\left(4, p^{2}, \varepsilon\right)$, where

$$
\varepsilon:= \begin{cases}+1, & \text { if } p \equiv 3,12,23,27,37,38,42,47,48,53 \bmod 55 \\ -1, & \text { if } p \equiv 2,7,8,13,17,18,28,32,43,52 \bmod 55\end{cases}
$$

Case 4: $\pi=a+b \tau$, with norm $N(\pi)=a^{2}+a b-b^{2}=q$, where the rational prime $q \equiv$ $\pm 1 \bmod 5$. (But assume π is not an associate of $\delta=-(2+5 \tau)$.) Now $G^{\pi}=O_{1}(4, q, \varepsilon)$, where $\varepsilon=\left(\left(5 a b-2 b^{2}\right) \mid q\right)$ can be computed using the rational Legendre symbol.

Case 5 - the most interesting!: $\pi=\delta=-(2+5 \tau)$, the only case in which the orthogonal space V is singular. Now $\mathbb{K}=G F(11)$ and $\tau=-2 / 5=4$. We find that $\operatorname{rad}(V)$ is spanned by $c=7 b_{0}+3 b_{1}+2 b_{2}+b_{3}$, and that $V=\operatorname{rad}(V) \perp V_{3}$, where V_{3} is the non-singular subspace spanned by b_{0}, b_{1}, b_{2}. Then $O(V) \simeq \check{V}_{3} \rtimes\left(\mathbb{K}^{*} \times O\left(V_{3}\right)\right)$, and the subgroup

$$
G^{\delta}=\widehat{O}_{1}(V) \simeq \check{V}_{3} \rtimes O_{1}\left(V_{3}\right)
$$

has order $11^{3} \cdot 11 \cdot\left(11^{2}-1\right)$. The isometry $z=\left(r_{0} r_{1} r_{2}\right)^{5}$ now acts as the central inversion in the group $O_{1}\left(V_{3}\right)$ for the icosahedral facet. And G^{δ} has a normal subgroup A isomorphic to $\check{V}_{3} \rtimes\langle z\rangle$ with order $2 \cdot 11^{3}$. Using the fact that $O_{1}(3,11,0) \simeq P S L_{2}(11) \rtimes C_{2}$, we conclude that

$$
\bar{G}:=G^{\delta} / A \simeq P S L_{2}(11),
$$

of order 660 . Remarkably, \bar{G} is also a string C-group. The resulting polytope is the 11-cell independently discovered by Coxeter in [3] and Grünbaum in [1]. Indeed, both $r_{0} r_{1} r_{2}$ and $r_{1} r_{2} r_{3}$ have period 5 in the quotient and

$$
\mathcal{P}(\bar{G})=\left\{\{3,5\}_{5},\{5,3\}_{5}\right\}
$$

is the universal 4-polytope with hemi-icosahedral facets and hemi-dodecahedral vertex-figures.
A similar analysis is possible for the group $H=[5,3,5]$ with diagram

and corresponding discriminant $\frac{-1}{16}(3+7 \tau) \sim-(3+7 \tau)=: \lambda$. Since $N(\lambda)=-19$, we see that λ is also prime. The group H^{λ} for the singular space V again has an interesting quotient, giving

$$
\bar{H} \simeq P S L_{2}(19)
$$

as the automorphism group for the universal regular polytope

$$
\mathcal{P}(\bar{H})=\left\{\{5,3\}_{5},\{3,5\}_{5}\right\},
$$

with hemi-dodecahedral facets and hemi-icosahedral vertex-figures. This is the 57 -cell described by Coxeter in [2].

References

[1] B. Grünbaum, Regularity of graphs, complexes and designs, in Problèmes combinatoires et théorie des graphes, vol. 260 of Colloq. Internat., C.N.R.S., Orsay, 1977, pp. 191-197.
[2] H. S. M. Coxeter, Ten toroids and fifty-seven hemidodecahedra, Geom. Dedicata, 13 (1982), pp. 87-99.
[3] __, A symmetrical arrangement of eleven hemi-icosahedra, in Convexity and Graph Theory, vol. 87 of North-Holland Math. Stud., North-Holland, Amsterdam, Amsterdam, 1984, pp. 391-441.
[4] B. Monson and E.Schulte, Reflection groups and polytopes over finite fields- I, Advances in Applied Mathematics, 33 (2004), pp. 290-217.

