Barry Monson Lecture 6:(Quasi)crystallographic groups, τ and the 11-cell November 2011

Idea: admit periods 5 and 10 to the crystallographic options $\{2, 3, 4, 6, \infty\}$ by letting the golden ratio $\tau := (1 + \sqrt{5})/2$ become an integer. (τ is the positive root of $\tau^2 = \tau + 1$.)

Recall for crystallographic G that $4\cos^2(\pi/p_{ij}) = m_{ij}m_{ji}$, a (rational) integer. Compare this with $\cos(\pi/5) = \tau/2$, so that $4\cos^2(\pi/5) = \tau^2 = \tau + 1$ and $4\cos^2(\pi/10) = \tau + 2$. If we allow such node labels, then the rotational periods 5 and 10 for $r_i r_j$ are induced by the diagrams

•
$$\tau^2 s$$
 and \bullet $(\tau+2)s$,

respectively, where now we allow rescaling of nodes by any 'integer' $s \in \mathbb{D}$ or its inverse:

Some Properties of the domain $\mathbb{D} := \mathbb{Z}[\tau] = \{a + b\tau : a, b \in \mathbb{Z}\}$, which is the ring of all algebraic integers in the field $\mathbb{Q}(\sqrt{5})$.

- 1. The non-trivial field automorphism mapping $\sqrt{5} \mapsto -\sqrt{5}$ induces a ring automorphism ': $\mathbb{D} \to \mathbb{D}$ (conjugation). Thus $(a + b\tau)' = (a + b) b\tau$. In particular, $\tau' = 1 \tau = -\tau^{-1}$.
- 2. $z = a + b\tau$ has (multiplicative) norm $N(z) := zz' = a^2 + ab b^2$. And \mathbb{D} is a Euclidean domain, with a division algorithm based on |N(z)|.
- 3. The set of *units* in \mathbb{D} is $\{\pm \tau^n : n \in \mathbb{Z}\} = \{u \in \mathbb{D} : N(u) = \pm 1\}$. If f_n is the *n*th Fibonacci number, taking $f_{-1} = 1$ and $f_0 = 0$, then for all $n \in \mathbb{Z}$

$$\tau^n = f_{n-1} + f_n \tau \; .$$

- 4. Recall that integers $z, w \in \mathbb{D}$ are associates if z = uw for some unit u. Up to associates, the primes $\pi \in \mathbb{D}$ can be classified as follows:
 - (a) the prime $\pi = \sqrt{5} = 2\tau 1$, which is self-conjugate (up to associates: $\pi' = -\pi$);
 - (b) rational primes $\pi = p \equiv \pm 2 \mod 5$, also self-conjugate;
 - (c) primes $\pi = a + b\tau$, for which $|N(\pi)|$ equals a rational prime $q \equiv \pm 1 \mod 5$. In this case, the conjugate prime $\pi' = (a + b) b\tau$ is not an associate of π .

New dihedral groups. You can check directly that the pentagonal group $H_2 = I_2(5)$ really does come from the diagram $\stackrel{1}{\bullet} \stackrel{\tau^2}{\bullet}$ and that the decagonal group $I_2(10)$ comes from $\stackrel{1}{\bullet} \stackrel{(\tau+2)}{\bullet}$. Furthermore, any 'quasicrystallographic' Coxeter group G with such a node-labelled diagram can be represented as a subgroup of $GL_n(\mathbb{D})$, through the action of G on the \mathbb{D} -module $\oplus_j \mathbb{D}b_j$. **Example**. G = [3, 5, 3] is a subgroup of O(V), where the real 4-space V is equipped with a Lorentzian form $x \cdot y$ of signature (+ + + -). Thus G also acts naturally on \mathbb{H}^3 and yields, for example, the regular icosahedral tessellation $\{3, 5, 3\}$ of hyperbolic space. Since τ^2 is a unit, there is essentially only one choice of diagram, namely

$$\Delta(G) = \stackrel{1}{\bullet} - \stackrel{1}{\longrightarrow} \stackrel{\tau^2}{\bullet} - \stackrel{\tau^2}{\bullet} - \stackrel{\tau^2}{\bullet} .$$

The discriminant is

disc(V) =
$$-\frac{1}{16}(2+5\tau) \sim -(2+5\tau)$$
,

where $\delta := -(2+5\tau)$ has norm -11. Thus δ is prime in \mathbb{D} .

Now consider any prime $\pi \in \mathbb{D}$. We can show that $G^{\pi} = \langle r_0, r_1, r_2, r_3 \rangle^{\pi}$ is a string *C*-group, with regular 4-polytope \mathcal{P}^{π} .

The subgroup $G_3^{\pi} = \langle r_0, r_1, r_2 \rangle^{\pi}$ is obviously some quotient of the spherical group $[3, 5] \simeq H_3$. After reduction modulo any prime π , even for associates of 2, the reflections r_j still have period 2. And consider

$$z := (r_0 r_1 r_2)^5 = \begin{bmatrix} -1 & 0 & 0 & \tau^4 \\ 0 & -1 & 0 & 2\tau^4 \\ 0 & 0 & -1 & 3\tau^2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(1)

Since τ^4 is a unit, $r_0r_1r_2$ still has period 10 in G^{π} . Thus $\langle r_0, r_1, r_2 \rangle^{\pi} \simeq [3, 5]$ and dually $\langle r_1, r_2, r_3 \rangle^{\pi} \simeq [5, 3]$.

Netx we emply [4, Th. 4.2], which essentially says that so long as (say) the facet group G_3^{π} is a Coxeter group of spherical type and the vertex-figure group G_3^{π} is any string *C*-group, then G^{π} itself must be a string *C*-group. The key step in proving this is to show that the orbit of $\mu_0 := [1, 0, 0, 0]$ under the right action of the matrix group $\langle r_0, r_1, r_2 \rangle$ has the same size modulo π as in characteristic 0, namely 12. (These row vectors correspond naturally to the vertices of the base icosahedron in $\{3, 5, 3\}$.) This is a routine check, so we get

Proposition 0.1. Let G = [3, 5, 3]. For any prime $\pi \in \mathbb{D}$, the group $G^{\pi} = \langle r_0, r_1, r_2, r_3 \rangle^{\pi}$ is a finite string C-group. The corresponding finite regular polytope \mathcal{P}^{π} is self-dual and has icosahedral facets $\{3, 5\}$ and dodecahedral vertex figures $\{5, 3\}$.

A more detailed description of G^{π} depends on the nature of the prime π . In all cases the underlying finite field $\mathbb{K} := \mathbb{D}/(\pi)$ has order $|N(\pi)|$, and G^{π} acts as an orthogonal group on a 4-dimensional vector space V over \mathbb{K} .

Case 1: $\pi = 2$. Here an easy calculation using GAP confirms that G^{π} is the orthogonal group $O(4, 2^2, -1)$ with Witt index 1 over $\mathbb{K} = GF(2^2)$. Since $|G^2| = 8160$, the polytope \mathcal{P}^2 has 68 vertices and 68 icosahedral facets.

Case 2: $\pi = \sqrt{5} = 2\tau - 1$. Here $|\pi\pi'| = 5 \equiv 0 \mod \pi$, so that the discriminant $\delta = -(2+5\tau) \equiv 3 \mod \pi$, which is non-square in $\mathbb{K} = GF(5)$. Thus $\varepsilon = -1$ and $G^{\pi} = O_1(4, 5, -1)$ has order 15600.

Case 3: π is an associate of an odd rational prime $p \equiv \pm 2 \mod 5$. Now $G^p = O_1(4, p^2, \varepsilon)$, where

$$\varepsilon := \begin{cases} +1, & \text{if } p \equiv 3, 12, 23, 27, 37, 38, 42, 47, 48, 53 \mod 55; \\ -1, & \text{if } p \equiv 2, 7, 8, 13, 17, 18, 28, 32, 43, 52 \mod 55. \end{cases}$$

Case 4: $\pi = a + b\tau$, with norm $N(\pi) = a^2 + ab - b^2 = q$, where the rational prime $q \equiv \pm 1 \mod 5$. (But assume π is not an associate of $\delta = -(2 + 5\tau)$.) Now $G^{\pi} = O_1(4, q, \varepsilon)$, where $\varepsilon = ((5ab - 2b^2) | q)$ can be computed using the rational Legendre symbol.

Case 5 – the most interesting!: $\pi = \delta = -(2 + 5\tau)$, the only case in which the orthogonal space V is singular. Now $\mathbb{K} = GF(11)$ and $\tau = -2/5 = 4$. We find that $\operatorname{rad}(V)$ is spanned by $c = 7b_0 + 3b_1 + 2b_2 + b_3$, and that $V = \operatorname{rad}(V) \perp V_3$, where V_3 is the non-singular subspace spanned by b_0, b_1, b_2 . Then $O(V) \simeq \check{V}_3 \rtimes (\mathbb{K}^* \times O(V_3))$, and the subgroup

$$G^{\delta} = \widehat{O}_1(V) \simeq \check{V}_3 \rtimes O_1(V_3)$$

has order $11^3 \cdot 11 \cdot (11^2 - 1)$. The isometry $z = (r_0 r_1 r_2)^5$ now acts as the *central inversion* in the group $O_1(V_3)$ for the icosahedral facet. And G^{δ} has a normal subgroup A isomorphic to $\check{V}_3 \rtimes \langle z \rangle$ with order $2 \cdot 11^3$. Using the fact that $O_1(3, 11, 0) \simeq PSL_2(11) \rtimes C_2$, we conclude that

$$\overline{G} := G^{\delta} / A \simeq PSL_2(11) ,$$

of order 660. Remarkably, \overline{G} is also a string *C*-group. The resulting polytope is the 11-cell independently discovered by Coxeter in [3] and Grünbaum in [1]. Indeed, both $r_0r_1r_2$ and $r_1r_2r_3$ have period 5 in the quotient and

$$\mathcal{P}(\overline{G}) = \{ \{3, 5\}_5, \{5, 3\}_5 \}$$

is the universal 4-polytope with hemi-icosahedral facets and hemi-dodecahedral vertex-figures.

A similar analysis is possible for the group H = [5, 3, 5] with diagram

$$\Delta(H) = \stackrel{1}{\bullet} - \stackrel{\tau^2}{\longrightarrow} \stackrel{\tau^2}{\longrightarrow} \stackrel{1}{\longrightarrow}$$

and corresponding discriminant $\frac{-1}{16}(3+7\tau) \sim -(3+7\tau) =: \lambda$. Since $N(\lambda) = -19$, we see that λ is also prime. The group H^{λ} for the singular space V again has an interesting quotient, giving

$$\overline{H} \simeq PSL_2(19)$$

as the automorphism group for the universal regular polytope

$$\mathcal{P}(\overline{H}) = \{ \{5,3\}_5, \{3,5\}_5 \} ,$$

with hemi-dodecahedral facets and hemi-icosahedral vertex-figures. This is the 57-cell described by Coxeter in [2].

References

- [1] B. GRÜNBAUM, *Regularity of graphs, complexes and designs*, in Problèmes combinatoires et théorie des graphes, vol. 260 of Colloq. Internat., C.N.R.S., Orsay, 1977, pp. 191–197.
- [2] H. S. M. COXETER, Ten toroids and fifty-seven hemidodecahedra, Geom. Dedicata, 13 (1982), pp. 87–99.
- [3] _____, A symmetrical arrangement of eleven hemi-icosahedra, in Convexity and Graph Theory, vol. 87 of North-Holland Math. Stud., North-Holland, Amsterdam, Amsterdam, 1984, pp. 391–441.
- [4] B. MONSON AND E.SCHULTE, *Reflection groups and polytopes over finite fields- I*, Advances in Applied Mathematics, 33 (2004), pp. 290–217.