Amalgamation of Groups

We basically follow Bourbaki, Algebra - I, §7.3 [1].

1. Let $\left\{M_{i}: i \in I\right\}$ be a family of groups. For another group A we suppose that we have injective homomorphisms

$$
h_{i}: A \rightarrow M_{i} .
$$

Note that we may assume that A and the M_{i} 's are mutually disjoint.
Let P_{i} be a right transversal of $(A) h_{i}$ in M_{i}, with $P_{i} \cap(A) h_{i}=\left\{e_{i}\right\}$, the identity in M_{i}. For each $z \in M_{i}$ there are unique $a \in A$ and $p \in P_{i}$ with

$$
z=(a) h_{i} p
$$

2. Presentations.

Suppose that $M=\left\langle X_{i} \mid R_{i}\right\rangle$. Once more we may assume that the X_{i} 's are mutually disjoint. Thus

$$
M_{i} \simeq \operatorname{Fr}\left(X_{i}\right) / \mathrm{N}\left(R_{i}\right) .
$$

Let $\pi_{i}: \operatorname{Fr}\left(X_{i}\right) \rightarrow M_{i}$ be the natural map, so that $\operatorname{ker}\left(\pi_{i}\right)=\mathrm{N}\left(R_{i}\right)$ is the normal subgroup generated by the relator set R_{i} in $\operatorname{Fr}\left(X_{i}\right)$.
Let $X=\cup_{i} X_{i}$. For each i there is a natural injection $\operatorname{Fr}\left(X_{i}\right) \hookrightarrow \operatorname{Fr}(X)$. In fact, if we construct free groups in the usual way from sets of reduced words, we can even assume that each $\operatorname{Fr}\left(X_{i}\right)$ is a subgroup of $\operatorname{Fr}(X)$ (usually not of finite index).
Now specify a set $A_{g e n}$ of generators for A. For each $a \in A_{\text {gen }}$ and $i \in I$, choose a word $w(a, i) \in \operatorname{Fr}\left(X_{i}\right) \subseteq \operatorname{Fr}(X)$ such that

$$
w(a, i) \pi_{i}=(a) h_{i} \in M_{i} .
$$

Next take

$$
R=\bigcup_{i} R_{i} \cup\left\{w(a, i) w(a, j)^{-1}: a \in A_{g e n}, i, j \in I\right\}
$$

Definition 0.1. The amalgamated product of the groups M_{i} along the subgroup A is

$$
M:=\operatorname{Fr}(X) / \mathrm{N}(R) .
$$

Let $\pi: \operatorname{Fr}(X) \rightarrow M$ be the natural map.
Remarks. The group M may be denoted

$$
*_{A} M_{i},
$$

although this suppresses the crucial nature of the isomorphisms h_{i}.
The special relations in R effectively identify all copies of A in the M_{i}.
3.

Theorem 0.2. [Pushouts] M is universal for families of maps $t_{i}: M_{i} \rightarrow G$ which agree on the subgroups $(A) h_{i}$:

If $h_{i} t_{i}=h_{j} t_{j}: A \rightarrow G$ for all $i, j \in I$, then there exists a unique homomorphism $f: M \rightarrow G$ such that $\varphi_{i} f=t_{i}$ for all $i \in I$.

Proof.
(a) We may define

$$
\begin{aligned}
\varphi_{i}: M_{i} & \rightarrow M \\
x & \mapsto x, \quad x \in X_{i}
\end{aligned}
$$

since each $R_{i} \subseteq R$. We don't yet know that φ_{i} is injective, because of the special relations in R.
(b) Those special relations do guarantee that in M we have

$$
(a) h_{i} \varphi_{i}=(a) h_{j} \varphi_{j}
$$

for all $i, j \in I$ and $a \in A$. Thus we have a single map

$$
h=h_{i} \varphi_{i}: A \rightarrow M
$$

for all $i \in I$.
(c) Now suppose $h_{i} t_{i}=h_{j} t_{j}: A \rightarrow G$ for all $i, j \in I$ and some general group G. Clearly M is generated by its subgroups $\left(M_{i}\right) \varphi_{i}$, so we are forced to define $f: M \rightarrow G$ so that $(x) \pi_{i} \varphi_{i} f=(x) \pi_{i} t_{i}$, for all $x \in X_{i}$. But since t_{i} is a homomorphism, all relations from R_{i} are satisfied when transferred to G. The remaining relations in R have the form $w(a, i) w(a, j)^{-1}=1$. These are satisfied in G since $(a) h_{i} t_{i}=(a) h_{j} t_{j}$. Thus f is uniquely well-defined.

Remark. We have that the universal object M exists. By standard arguments, M is unique to isomorphism, given the injective maps $h_{i}: A \rightarrow M_{i}$.
For more detailed structure, we must exploit explicit representations of M.
(d) Motivated by 'intuitive' calculations in M, we now consider finite sequences

$$
\sigma=\left(a ; i_{1}, \ldots, i_{n} ; p_{1}, \ldots, p_{n}\right)
$$

where $a \in A, i_{\alpha} \in I$ and $p_{\alpha} \in P_{i_{\alpha}}$, for $1 \leqslant \alpha \leqslant n$. We say

- σ has length $l(\sigma)=n$. For $n=0, \sigma=(a)$.
- σ is a decomposition for $x \in M$ if

$$
x=(a) h \cdot \prod_{\alpha=1}^{n}\left(p_{\alpha}\right) \varphi_{i_{\alpha}}
$$

- σ is reduced if $i_{\alpha} \neq i_{\alpha+1}$, for $1 \leqslant \alpha<n$ and $p_{\alpha} \neq e_{i_{\alpha}}$ for $1 \leqslant \alpha \leqslant n$.

In particular, if e is the identity in A, then (e) is a reduced decomposition for the identity $1 \in M$. More generally, (a) is a reduced decomposition for (a) $h \in M$.
(e) Let Σ be the set of all reduced decompositions σ. Define

$$
\begin{aligned}
\Phi: \Sigma & \rightarrow M \\
\sigma=\left(a ; i_{1}, \ldots, i_{n} ; p_{1}, \ldots, p_{n}\right) & \mapsto(a) h \cdot \prod_{\alpha=1}^{n}\left(p_{\alpha}\right) \varphi_{i_{\alpha}}
\end{aligned}
$$

(We want to show that Φ is a bijection.) For fixed i let

$$
\Sigma_{i}:=\left\{\sigma \in \Sigma: \sigma=\left(e ; i_{1}, \ldots, i_{n} ; p_{1}, \ldots, p_{n}\right), \text { where } i_{1} \neq i, \text { if } n \geqslant 1\right\} .
$$

Now we may define

$$
\Psi_{i}: M_{i} \times \Sigma_{i} \rightarrow \Sigma
$$

by

$$
(z, \sigma) \mapsto \begin{array}{ll}
\left(a ; i_{1}, \ldots, i_{n} ; p_{1}, \ldots, p_{n}\right), & \text { if } p=e_{i} ; \\
\left(a ; i, i_{1}, \ldots, i_{n} ; p, p_{1}, \ldots, p_{n}\right), & \text { if } p \neq e_{i},
\end{array}
$$

where $\sigma=\left(e ; i_{1}, \ldots, i_{n} ; p_{1}, \ldots, p_{n}\right)$ and $z=(a) h_{i} p$, with $a \in A$ and $p \in P_{i}$. It is easy to check that Ψ_{i} is well-defined and onto.
On the other hand, suppose $(z, \sigma) \Psi_{i}=\left(z^{\prime}, \sigma^{\prime}\right) \Psi_{i}$, for $\sigma^{\prime}=\left(e ; i_{1}^{\prime}, \ldots, i_{m}^{\prime} ; p_{1}^{\prime}, \ldots, p_{m}^{\prime}\right)$ and $z^{\prime}=\left(a^{\prime}\right) h_{i} p^{\prime}$, with $a^{\prime} \in A$ and $p^{\prime} \in P_{i}$. Then $a=a^{\prime}$. If $p=e_{i}$, then $i_{1} \neq i$, so $p^{\prime}=e_{i}, m=n$ and indeed $\sigma=\sigma^{\prime}$. If $p \neq e_{i}$, then similarly we must have $\sigma=\sigma^{\prime}$.
(f) Thus each Ψ_{i} is bijective. This lets use define for each $i \in I$ and $x \in M_{i}$ a mapping

$$
\begin{aligned}
f_{i, x}: \Sigma & \rightarrow \Sigma \\
(z, \sigma) \Psi_{i} & \mapsto\left(x^{-1} z, \sigma\right) \Psi_{i}
\end{aligned}
$$

Clearly $f_{i, x}$ is bijective.
For each $a \in A$ we can also define

$$
\begin{aligned}
f_{a}: \Sigma & \rightarrow \Sigma \\
\left(a^{\prime} ; i_{1}, \ldots, i_{n} ; p_{1}, \ldots, p_{n}\right) & \mapsto\left(a^{-1} a^{\prime} ; i_{1}, \ldots, i_{n} ; p_{1}, \ldots, p_{n}\right)
\end{aligned}
$$

Clearly f_{a} is also bijective.
It is easy to check that

- $f_{i, e_{i}}=1_{\Sigma}$
- $f_{i, x y}=f_{i, x} f_{i, y}$
- for any $a \in A$ and $i \in I$, we have $f_{a}=f_{i,(a) h_{i}}$.
(g) Now let $G=\operatorname{Sym}(\Sigma)$. We have homomorphisms

$$
\begin{aligned}
t_{i}: M_{i} & \rightarrow G \\
x & \mapsto f_{i, x}
\end{aligned}
$$

such that for all $a \in A$ and $i \in I$,

$$
(a) h_{i} t_{i}=f_{i,(a) h_{i}}=f_{a}
$$

independent of i. Thus there is a unique map $f: M \rightarrow G$ with $\varphi_{i} f=t_{i}$ for all i. Now let

$$
\sigma=\left(a ; i_{1}, \ldots, i_{n} ; p_{1}, \ldots, p_{n}\right)
$$

- In M_{i} we have $e_{i}=e_{i} e_{i}=(e) h_{i} e_{i}$. Thus if $\sigma=\left(e ; i_{1}, \ldots, i_{n} ; p_{1}, \ldots, p_{n}\right) \in$ Σ_{i}, we must have $\left(e_{i}, \sigma\right) \Psi_{i}=\left(e ; i_{1}, \ldots, i_{n} ; p_{1}, \ldots, p_{n}\right)=\sigma$. In particular, $\left(e_{i},(e)\right) \Psi_{i}=(e)$.
- Suppose $p_{1} \in P_{i_{1}}-\left\{e_{i_{1}}\right\}$. Then

$$
(e) f_{i_{1}, p_{1}^{-1}}=\left(p_{1},(e)\right) \Psi_{i_{1}}=\left(e, i_{1} ; p_{1}\right) .
$$

- By induction we get

$$
\begin{aligned}
(e) f_{i_{n}, p_{n}^{-1}} f_{i_{n-1}, p_{n-1}^{-1}} \ldots f_{i_{1}, p_{1}^{-1}} & =\left(e ; i_{2}, \ldots, i_{n} ; p_{2}, \ldots, p_{n}\right) f_{i_{1}, p_{1}^{-1}} \\
& =\left(p_{1},\left(e ; i_{2}, \ldots, i_{n} ; p_{2}, \ldots, p_{n}\right)\right) \Psi_{i_{1}} \\
& =\left(e ; i_{1}, i_{2}, \ldots, i_{n} ; p_{1}, p_{2}, \ldots, p_{n}\right) .
\end{aligned}
$$

Thus

$$
\text { (e) } f_{i_{n}, p_{n}^{-1}} f_{i_{n-1}, p_{n-1}^{-1}} \ldots f_{i_{1}, p_{1}^{-1}} f_{a^{-1}}=\left(a ; i_{1}, \ldots, i_{n} ; p_{1}, \ldots, p_{n}\right) .
$$

(h) Note that $f_{i, p}=(p) t_{i}=(p) \varphi_{i} f$ and

$$
\left(\left(a^{-1}\right) h\right) f=\left(\left(a^{-1}\right) h_{i} \varphi_{i}\right) f=\left(a^{-1}\right) h_{i} t_{i}=f_{a^{-1}}
$$

for all i. Thus for any $\sigma=\left(a ; i_{1}, \ldots, i_{n} ; p_{1}, \ldots, p_{n}\right)$ we have

$$
(e)\left[\left(p_{n}^{-1}\right) \varphi_{i_{n}} \cdots\left(p_{1}^{-1}\right) \varphi_{i_{1}}\left(a^{-1}\right) h\right] f=\sigma,
$$

or

$$
(e)\left[(\sigma \Phi)^{-1}\right] f=\sigma \text {. }
$$

Thus $\Phi: \Sigma \rightarrow M$ is injective: reduced decompositions are unique.

4. Existence

Let D be the set of all elements of M which admit decompositions. Thus $1 \in D$. Now M is generated by

$$
(A) h \cup \bigcup_{i}\left(P_{i}\right) \varphi .
$$

Lemma 0.3. Shifting. Say $i_{\alpha} \in I, p_{\alpha} \in P_{i_{\alpha}}$, for $1 \leqslant \alpha \leqslant n$. For each $a \in A$ there exist $a^{\prime} \in A$ and $p_{\alpha}^{\prime} \in P_{i_{\alpha}}, 1 \leqslant \alpha \leqslant n$, such that

$$
\left(p_{1}\right) \varphi_{i_{1}} \ldots\left(p_{n}\right) \varphi_{i_{n}}(a) h=\left(a^{\prime}\right) h\left(p_{1}^{\prime}\right) \varphi_{i_{1}} \ldots\left(p_{n}^{\prime}\right) \varphi_{i_{n}} .
$$

Moreover, $p_{\alpha} \neq e_{i_{\alpha}} \Rightarrow p_{\alpha}^{\prime} \neq e_{i_{\alpha}}$.
Proof. (Induction) Since $(a) h=(a) h_{i_{n}} \varphi_{i_{n}}$, there exist $a_{n} \in A$ and $p_{n}^{\prime} \in P_{i_{n}}$ such that $p_{n}(a) h_{i_{n}}=\left(a_{n}\right) h_{i_{n}} p_{n}^{\prime}$. Thus $\left(p_{n}\right) \varphi_{i_{n}}(a) h=\left(a_{n}\right) h\left(p_{n}^{\prime}\right) \varphi_{i_{n}}$.

It follows that $D \cdot(A) h \subseteq D$. Similarly, $D \cdot\left(P_{i}\right) \varphi_{i} \subseteq D$. The case $i_{n} \neq i$ is trivial; the case $i_{n}=i$ follows as in the Lemma.
5. Conclusion Each $x \in M$ has a unique reduced decomposition σ, so that

$$
x=(a) h \prod_{\alpha=1}^{n}\left(p_{\alpha}\right) \varphi_{i_{\alpha}},
$$

with $a \in A$ and $p_{\alpha} \in P_{i_{\alpha}}-\left\{e_{i_{\alpha}}\right\}$. Any other decomposition σ^{\prime} for x must have $l\left(\sigma^{\prime}\right)>l(\sigma)$, since any non-reduced decomposition can be progressively shortened using Lemma 0.3 to yield a reduced decomposition.

6. Consequences

(a) $h=h_{i} \varphi_{i}$ is injective.

If $(a) h=\left(a^{\prime}\right) h=x$ in M, then (a) and $\left(a^{\prime}\right)$ are both reduced decompositions for x, so $a=a^{\prime}$ by uniqueness.
(b) Each $\varphi_{i}: M_{i} \rightarrow M$ is injective.

Since h is injective, we have that φ_{i} must be injective on $(A) h_{i} \subseteq M_{i}$. Now suppose $(x) \varphi_{i}=\left(x^{\prime}\right) \varphi_{i}$ for $x=(a) h_{i} p, \quad x^{\prime}=\left(a^{\prime}\right) h_{i} p^{\prime}$, where $p, p^{\prime} \in P_{i}$ and $a, a^{\prime} \in A$. Thus $z=(a) h \cdot(p) \varphi_{i}=\left(a^{\prime}\right) h \cdot\left(p^{\prime}\right) \varphi_{i} \in M$ has two decompositions: $(a ; i ; p)$ [or (a), when $\left.p=e_{i}\right]$ and $\left(a^{\prime} ; i ; p^{\prime}\right)$ [or $\left(a^{\prime}\right)$, when $p^{\prime}=e_{i}$]. By uniqueness, in any of these cases we have $a=a^{\prime}$ and $p=p^{\prime}$, so $x=x^{\prime}$.
(c) For $i \neq j,\left(M_{i}\right) \varphi_{i} \cap\left(M_{j}\right) \varphi_{j}=(A) h$.

Clearly $(A) h=(A) h_{i} \varphi_{i} \subseteq\left(M_{i}\right) \varphi_{i}$. So suppose $z \in\left(M_{i}\right) \varphi_{i} \cap\left(M_{j}\right) \varphi_{j}$. Then z has reduced decompositions $(a ; i ; p)$ or (a), when $\left.p=e_{i}\right]$ and ($a^{\prime} ; j ; p^{\prime}$) [or (a^{\prime}), when $p^{\prime}=e_{j}$]. By uniqueness this means that $p=e_{i}, p^{\prime}=e_{j}$ and $a=a^{\prime}$. Thus $z=(a) h$.
(d) Conventions. After suitable identifications we can assume that $M_{i} \subseteq M$ for all $i \in I, A \subseteq M, M$ is generated by the M_{i} 's and $M_{i} \cap M_{j}=A$, for all $i \neq j$.
(e) Suppose $x \in M$ has reduced decomposition

$$
\sigma=\left(a ; i_{1}, \ldots, i_{n} ; p_{1}, \ldots, p_{n}\right)
$$

Considering the above identifications we may write

$$
x=a p_{1} \cdots p_{n}
$$

where $a \in A, p_{\alpha} \in P_{i_{\alpha}}-\{1\}$, with all $i_{\alpha} \neq i_{\alpha+1}$.
If $i_{1} \neq i_{n}$, then

$$
\begin{aligned}
x^{2} & =\left(a p_{1} \cdots p_{n}\right)\left(a p_{1} \cdots p_{n}\right) \\
& =\left(a a^{\prime}\right)\left(p_{1}^{\prime} \cdots p_{n}^{\prime}\right)\left(p_{1} \cdots p_{n}\right)
\end{aligned}
$$

is also reduced. By induction we conclude that x must have infinite period.
On the other hand, if $i_{1}=i_{n}$, then $p_{n} x p_{n}^{-1}=\left(p_{n} a p_{1}\right) \cdot p_{2} \cdots p_{n-1}$, where $p_{n} a p_{1}=a^{\prime} p_{1}^{\prime}$ for $p_{1}^{\prime} \in P_{i_{1}}, a^{\prime} \in A$.
Thus $p_{n} x p_{n}^{-1}$ has length $n-1$ or $n-2$ depending on whether $p^{\prime} \neq e_{i_{1}}$ or $p^{\prime}=e_{i_{1}}$.
Thus: every element of finite order in M is conjugate to an element of finite order in some particular M_{j}.
7. Well-positioned Subgroups. Continuing with the same conventions, suppose that we have subgroups $N_{i}<M_{i}$ for each i and a fixed subgroup $B<A$ such that

$$
N_{i} \cap A=B, \text { for each } i
$$

Lemma 0.4. For each i a transversal \tilde{P}_{i} to B in N_{i} can be extended to a transversal P_{i} to A in M_{i}.

Proof. For $x, y \in \tilde{P}_{i}$ suppose $A x=A y$. Since $x, y \in N_{i}$, we have $x y^{-1} \in A \cap N_{i}=B$, so $x=y$.

Theorem 0.5. (Bourbaki, p. 167) The subgroup of M generated by the N_{i} 's is isomorphic to

$$
N:=*_{B} N_{i} .
$$

Proof. Choose transversals as in the Lemma. We have inclusions $s_{i}: N_{i} \hookrightarrow M$ which obviously agree on B. Let $\psi_{i}: N_{i} \rightarrow N$ be the canonical maps (which we have proved must be injections). By the universal property of N there exists a unique map $g: N \rightarrow M$ such that $\psi_{i} g=s_{i}$ for all i.
Now let $z \in \operatorname{ker}(g)$. As an element of N, z thus has a canonical form $z=$ $\tilde{b}\left(\tilde{t}_{1}\right) \psi_{i_{1}} \cdots\left(\tilde{t}_{n}\right) \psi_{i_{n}}$, where $\tilde{b}=b \psi_{i}$ for all i and the $t_{j} \in \tilde{P}_{i_{j}} \subseteq P_{i_{j}}$, say. Applying the inclusions $s_{i_{j}}$ we get

$$
1=(z) g=b \tilde{t}_{1} \cdots \tilde{t}_{n}
$$

Since (by our choice of transversals) this is a canonical form in M, we must have $n=0$ and $b=1$. Thus $z=1$ and g is injective.

References

[1] N. Bourbaki, Elements of Mathematics, Algebra I, Hermann, Paris, (AddisonWesley, Reading, Mass.), 1974.

