
Amalgamation of Groups

We basically follow Bourbaki, Algebra - I, §7.3 [1].

1. Let {Mi : i ∈ I} be a family of groups. For another group A we suppose that we
have injective homomorphisms

hi : A→Mi .

Note that we may assume that A and the Mi’s are mutually disjoint.

Let Pi be a right transversal of (A)hi in Mi, with Pi ∩ (A)hi = {ei}, the identity in
Mi. For each z ∈Mi there are unique a ∈ A and p ∈ Pi with

z = (a)hi p .

2. Presentations.

Suppose that M = 〈Xi |Ri〉. Once more we may assume that the Xi’s are mutually
disjoint. Thus

Mi ' Fr(Xi)/N(Ri) .

Let πi : Fr(Xi) → Mi be the natural map, so that ker(πi) = N(Ri) is the normal
subgroup generated by the relator set Ri in Fr(Xi).

Let X = ∪iXi. For each i there is a natural injection Fr(Xi) ↪→ Fr(X). In fact, if
we construct free groups in the usual way from sets of reduced words, we can even
assume that each Fr(Xi) is a subgroup of Fr(X) (usually not of finite index).

Now specify a set Agen of generators for A. For each a ∈ Agen and i ∈ I, choose a
word w(a, i) ∈ Fr(Xi) ⊆ Fr(X) such that

w(a, i)πi = (a)hi ∈Mi .

Next take
R =

⋃
i

Ri ∪ {w(a, i)w(a, j)−1 : a ∈ Agen, i, j ∈ I} .

Definition 0.1. The amalgamated product of the groups Mi along the subgroup A
is

M := Fr(X)/N(R) .

Let π : Fr(X)→M be the natural map.

Remarks. The group M may be denoted

∗AMi ,

although this suppresses the crucial nature of the isomorphisms hi.

The special relations in R effectively identify all copies of A in the Mi.
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Theorem 0.2. [Pushouts] M is universal for families of maps ti : Mi → G which
agree on the subgroups (A)hi:
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If hiti = hjtj : A → G for all i, j ∈ I, then there exists a unique homomorphism
f : M → G such that ϕif = ti for all i ∈ I.

Proof.

(a) We may define

ϕi : Mi → M

x 7→ x, x ∈ Xi

since each Ri ⊆ R. We don’t yet know that ϕi is injective, because of the
special relations in R.

(b) Those special relations do guarantee that in M we have

(a)hi ϕi = (a)hj ϕj

for all i, j ∈ I and a ∈ A. Thus we have a single map

h = hiϕi : A→M

for all i ∈ I.

(c) Now suppose hiti = hjtj : A → G for all i, j ∈ I and some general group G.
Clearly M is generated by its subgroups (Mi)ϕi, so we are forced to define
f : M → G so that (x)πiϕif = (x)πiti, for all x ∈ Xi. But since ti is a
homomorphism, all relations from Ri are satisfied when transferred to G. The
remaining relations in R have the form w(a, i)w(a, j)−1 = 1. These are satisfied
in G since (a)hiti = (a)hjtj. Thus f is uniquely well-defined. �
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Remark. We have that the universal object M exists. By standard arguments,
M is unique to isomorphism, given the injective maps hi : A→Mi.

For more detailed structure, we must exploit explicit representations of M .

(d) Motivated by ‘intuitive’ calculations in M , we now consider finite sequences

σ = (a; i1, . . . , in; p1, . . . , pn)

where a ∈ A, iα ∈ I and pα ∈ Piα , for 1 6 α 6 n. We say

• σ has length l(σ) = n. For n = 0, σ = (a).

• σ is a decomposition for x ∈M if

x = (a)h ·
n∏

α=1

(pα)ϕiα

• σ is reduced if iα 6= iα+1, for 1 6 α < n and pα 6= eiα for 1 6 α 6 n.
In particular, if e is the identity in A, then (e) is a reduced decomposition
for the identity 1 ∈M . More generally, (a) is a reduced decomposition for
(a)h ∈M .

(e) Let Σ be the set of all reduced decompositions σ. Define

Φ : Σ → M

σ = (a; i1, . . . , in; p1, . . . , pn) 7→ (a)h ·
n∏

α=1

(pα)ϕiα

(We want to show that Φ is a bijection.) For fixed i let

Σi := {σ ∈ Σ : σ = (e; i1, . . . , in; p1, . . . , pn),where i1 6= i, if n > 1} .

Now we may define
Ψi : Mi × Σi → Σ

by

(z, σ) 7→ (a; i1, . . . , in; p1, . . . , pn), if p = ei;
(a; i, i1, . . . , in; p, p1, . . . , pn), if p 6= ei,

where σ = (e; i1, . . . , in; p1, . . . , pn) and z = (a)hi p, with a ∈ A and p ∈ Pi. It
is easy to check that Ψi is well-defined and onto.

On the other hand, suppose (z, σ)Ψi = (z′, σ′)Ψi, for σ′ = (e; i′1, . . . , i
′
m; p′1, . . . , p

′
m)

and z′ = (a′)hi p
′, with a′ ∈ A and p′ ∈ Pi. Then a = a′. If p = ei, then i1 6= i,

so p′ = ei, m = n and indeed σ = σ′. If p 6= ei, then similarly we must have
σ = σ′.
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(f) Thus each Ψi is bijective. This lets use define for each i ∈ I and x ∈ Mi a
mapping

fi,x : Σ → Σ

(z, σ)Ψi 7→ (x−1z, σ)Ψi

Clearly fi,x is bijective.

For each a ∈ A we can also define

fa : Σ → Σ

(a′; i1, . . . , in; p1, . . . , pn) 7→ (a−1 a′; i1, . . . , in; p1, . . . , pn)

Clearly fa is also bijective.

It is easy to check that

• fi,ei = 1Σ

• fi,xy = fi,xfi,y
• for any a ∈ A and i ∈ I, we have fa = fi,(a)hi .

(g) Now let G = Sym(Σ). We have homomorphisms

ti : Mi → G

x 7→ fi,x

such that for all a ∈ A and i ∈ I,

(a)hiti = fi,(a)hi = fa ,

independent of i. Thus there is a unique map f : M → G with ϕif = ti for all
i. Now let

σ = (a; i1, . . . , in; p1, . . . , pn)

• In Mi we have ei = ei ei = (e)hi ei. Thus if σ = (e; i1, . . . , in; p1, . . . , pn) ∈
Σi, we must have (ei, σ)Ψi = (e; i1, . . . , in; p1, . . . , pn) = σ. In particular,
(ei, (e))Ψi = (e).

• Suppose p1 ∈ Pi1 − {ei1}. Then

(e)fi1,p−1
1

= (p1, (e))Ψi1 = (e, i1; p1) .

• By induction we get

(e)fin,p−1
n
fin−1,p

−1
n−1

. . . fi1,p−1
1

= (e; i2, . . . , in; p2, . . . , pn)fi1,p−1
1

= (p1, (e; i2, . . . , in; p2, . . . , pn))Ψi1

= (e; i1, i2, . . . , in; p1, p2, . . . , pn) .

Thus

(e)fin,p−1
n
fin−1,p

−1
n−1

. . . fi1,p−1
1
fa−1 = (a; i1, . . . , in; p1, . . . , pn) .
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(h) Note that fi,p = (p)ti = (p)ϕif and

((a−1)h)f = ((a−1)hiϕi)f = (a−1)hiti = fa−1

for all i. Thus for any σ = (a; i1, . . . , in; p1, . . . , pn) we have

(e)[(p−1
n )ϕin · · · (p−1

1 )ϕi1(a
−1)h]f = σ ,

or
(e)[(σΦ)−1]f = σ .

Thus Φ : Σ→M is injective: reduced decompositions are unique.

4. Existence

Let D be the set of all elements of M which admit decompositions. Thus 1 ∈ D.
Now M is generated by

(A)h ∪
⋃
i

(Pi)ϕ .

Lemma 0.3. Shifting. Say iα ∈ I, pα ∈ Piα, for 1 6 α 6 n. For each a ∈ A there
exist a′ ∈ A and p′α ∈ Piα, 1 6 α 6 n, such that

(p1)ϕi1 . . . (pn)ϕin(a)h = (a′)h(p′1)ϕi1 . . . (p
′
n)ϕin .

Moreover, pα 6= eiα ⇒ p′α 6= eiα.

Proof. (Induction) Since (a)h = (a)hinϕin , there exist an ∈ A and p′n ∈ Pin such
that pn(a)hin = (an)hinp

′
n. Thus (pn)ϕin(a)h = (an)h(p′n)ϕin . �

It follows that D · (A)h ⊆ D. Similarly, D · (Pi)ϕi ⊆ D. The case in 6= i is trivial;
the case in = i follows as in the Lemma.

5. Conclusion Each x ∈M has a unique reduced decomposition σ, so that

x = (a)h
n∏

α=1

(pα)ϕiα ,

with a ∈ A and pα ∈ Piα − {eiα}. Any other decomposition σ′ for x must have
l(σ′) > l(σ), since any non-reduced decomposition can be progressively shortened
using Lemma 0.3 to yield a reduced decomposition.

6. Consequences

(a) h = hiϕi is injective.

If (a)h = (a′)h = x in M , then (a) and (a′) are both reduced decompositions
for x, so a = a′ by uniqueness.
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(b) Each ϕi : Mi →M is injective.

Since h is injective, we have that ϕi must be injective on (A)hi ⊆ Mi. Now
suppose (x)ϕi = (x′)ϕi for x = (a)hip, x′ = (a′)hip

′, where p, p′ ∈ Pi and
a, a′ ∈ A. Thus z = (a)h · (p)ϕi = (a′)h · (p′)ϕi ∈ M has two decompositions:
(a; i; p) [or (a), when p = ei] and (a′; i; p′) [or (a′), when p′ = ei]. By uniqueness,
in any of these cases we have a = a′ and p = p′, so x = x′.

(c) For i 6= j, (Mi)ϕi ∩ (Mj)ϕj = (A)h.

Clearly (A)h = (A)hiϕi ⊆ (Mi)ϕi. So suppose z ∈ (Mi)ϕi ∩ (Mj)ϕj. Then z
has reduced decompositions (a; i; p) [or (a), when p = ei] and (a′; j; p′) [or (a′),
when p′ = ej]. By uniqueness this means that p = ei, p

′ = ej and a = a′. Thus
z = (a)h.

(d) Conventions. After suitable identifications we can assume that Mi ⊆ M for
all i ∈ I, A ⊆M , M is generated by the Mi’s and Mi ∩Mj = A, for all i 6= j.

(e) Suppose x ∈M has reduced decomposition

σ = (a; i1, . . . , in; p1, . . . , pn) .

Considering the above identifications we may write

x = ap1 · · · pn

where a ∈ A, pα ∈ Piα − {1}, with all iα 6= iα+1.

If i1 6= in, then

x2 = (ap1 · · · pn)(ap1 · · · pn)

= (aa′)(p′1 · · · p′n)(p1 · · · pn)

is also reduced. By induction we conclude that x must have infinite period.

On the other hand, if i1 = in, then pnxp
−1
n = (pnap1) · p2 · · · pn−1, where

pnap1 = a′p′1 for p′1 ∈ Pi1 , a′ ∈ A.

Thus pnxp
−1
n has length n−1 or n−2 depending on whether p′ 6= ei1 or p′ = ei1 .

Thus: every element of finite order in M is conjugate to an element of finite
order in some particular Mj.
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7. Well-positioned Subgroups. Continuing with the same conventions, suppose
that we have subgroups Ni < Mi for each i and a fixed subgroup B < A such that

Ni ∩ A = B, for each i .

Lemma 0.4. For each i a transversal P̃i to B in Ni can be extended to a transversal
Pi to A in Mi.

Proof. For x, y ∈ P̃i suppose Ax = Ay. Since x, y ∈ Ni, we have xy−1 ∈ A∩Ni = B,
so x = y. �

Theorem 0.5. (Bourbaki, p. 167) The subgroup of M generated by the Ni’s is
isomorphic to

N := ∗BNi .

Proof. Choose transversals as in the Lemma. We have inclusions si : Ni ↪→ M
which obviously agree on B. Let ψi : Ni → N be the canonical maps (which we have
proved must be injections). By the universal property of N there exists a unique
map g : N →M such that ψig = si for all i.

Now let z ∈ ker(g). As an element of N , z thus has a canonical form z =
b̃ (t̃1)ψi1 · · · (t̃n)ψin , where b̃ = bψi for all i and the tj ∈ P̃ij ⊆ Pij , say. Apply-
ing the inclusions sij we get

1 = (z)g = bt̃1 · · · t̃n .

Since (by our choice of transversals) this is a canonical form in M , we must have
n = 0 and b = 1. Thus z = 1 and g is injective. �
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