Amalgamation of Groups

We basically follow Bourbaki, Algebra - I, §7.3 [1].

1. Let {M; : i € I} be a family of groups. For another group A we suppose that we
have injective homomorphisms

Note that we may assume that A and the M;’s are mutually disjoint.

Let P; be a right transversal of (A)h; in M;, with P, N (A)h; = {e;}, the identity in
M;. For each z € M; there are unique a € A and p € P; with

z=(a)h;p .

2. Presentations.

Suppose that M = (X;| R;). Once more we may assume that the X;’s are mutually
disjoint. Thus

Let m; : Fr(X;) — M; be the natural map, so that ker(m;) = N(R;) is the normal
subgroup generated by the relator set R; in Fr(X;).

Let X = U;X;. For each i there is a natural injection Fr(X;) — Fr(X). In fact, if
we construct free groups in the usual way from sets of reduced words, we can even
assume that each Fr(X;) is a subgroup of Fr(X) (usually not of finite index).

Now specify a set Age, of generators for A. For each a € Ay, and i € I, choose a
word w(a, i) € Fr(X;) C Fr(X) such that

w(a,i)m; = (a)h; € M; .
Next take
R= URi U {w(a,i)w(a,j)™" : a € Agen,i,j €1} .

Definition 0.1. The amalgamated product of the groups M; along the subgroup A
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M :=Fr(X)/N(R) .
Let w: Fr(X) — M be the natural map.
Remarks. The group M may be denoted
*AMi

although this suppresses the crucial nature of the isomorphisms h;.

The special relations in R effectively identify all copies of A in the M;.



Theorem 0.2. [Pushouts| M is universal for families of maps t; : M; — G which
agree on the subgroups (A)h;:

If hiti = hjt; : A — G for all 4,5 € I, then there exists a unique homomorphism
f: M — G such that ¢;f =1t; for all ¢ € I.

Proof.

(a)

We may define

o My — M
r — 1z, xeEX;
since each R; € R. We don’t yet know that ¢; is injective, because of the
special relations in R.

Those special relations do guarantee that in M we have
(@)hipi = (a)h; ¢;

for all 7,5 € I and a € A. Thus we have a single map
h=hyp :A—M

forallz e I.

Now suppose h;t; = hjt; : A — G for all 4,5 € I and some general group G.
Clearly M is generated by its subgroups (M;)y;, so we are forced to define
f: M — G so that (x)mp;f = (z)mt;, for all x € X;. But since t; is a
homomorphism, all relations from R; are satisfied when transferred to G. The
remaining relations in R have the form w(a, i)w(a, j)~' = 1. These are satisfied
in G since (a)h;t; = (a)h;t;. Thus f is uniquely well-defined. O



Remark. We have that the universal object M exists. By standard arguments,
M is unique to isomorphism, given the injective maps h; : A — M;.
For more detailed structure, we must exploit explicit representations of M.

Motivated by ‘intuitive’ calculations in M, we now consider finite sequences

0 = (a;ila“-ain;pla"'apn)

where a € A, i, € [ and p, € P, for 1 < a <n. We say
e o has length [(0) =n. Forn =0, 0 = (a).
e o is a decomposition for x € M if

n

r=(@h- [[(a)ei.

a=1

o 0 is reduced if iy # io11, for 1 <a <nand p, #e;, for 1 <a<n.
In particular, if e is the identity in A, then (e) is a reduced decomposition
for the identity 1 € M. More generally, (a) is a reduced decomposition for
(a)h € M.

Let X be the set of all reduced decompositions o. Define

.Y — M

n

g = (a;ila e 7in;p17 see 7pn) = (G)h : H(Pa)%’a

a=1
(We want to show that ® is a bijection.) For fixed i let
Y,={oc€eX :o=(€i1,- -, in;P1,---,Pn), Where iy #i,if n > 1} .
Now we may define
\Iji : MZ X Ez — Y

by

(a;ilw"ain;pla--'?pn)? 1fp:€za
(a;i7i17"'7in;p7p17"'7pn)7 lfp7£€“

where o = (e;41,...,0n;p1,---,0n) and z = (a)h; p, with a € A and p € P;. It
is easy to check that ¥; is well-defined and onto.

(2,0) —

On the other hand, suppose (z,0)V; = (2/,0")W,, for o’ = (e;dy, ..., i), ..., 0.,)

and 2’ = (a')h; p/, with @’ € A and p’ € P;. Then a =d'. If p = e;, then iy # i,
so p' = e;, m = n and indeed o = o’. If p # ¢;, then similarly we must have
o=70.



(f) Thus each V; is bijective. This lets use define for each ¢ € [ and z € M; a
mapping
fiz 12 — X
(ZJO-)\I/Z' = (l’_IZ,O')\I/Z-
Clearly f; . is bijective.
For each a € A we can also define

fo: B

(@'sin, .. ins Py -y P0) (a_l a'sit, i PLs ey D)

!
1

Clearly f, is also bijective.
It is easy to check that

° fi,e,- == ]-Z
® fiay = fialiy

e for any a € A and ¢ € I, we have f, = f; (),
(g) Now let G = Sym(X). We have homomorphisms
ti: M, — G
T = fi,z
such that for alla € Aand i € I,
(a)hit; = fi(ayn; = fa

independent of ¢. Thus there is a unique map f : M — G with ¢;f = t; for all
1. Now let

o= (a;ilw"ain;pla"'apn)
e In M; we have e; = e;e; = (e)h;e;. Thus if o = (€;41,...,0;P1,...,Pn) €
Y, we must have (e;,0)V; = (e;i1,...,%,;p1,--.,Pn) = 0. In particular,

(€5, (e))¥; = (e).
e Suppose p; € P;, —{e;,;}. Then
(€)fi, prt = (p1, (€)) Wi, = (€13 p1) -
e By induction we get
(e)fimpgl fin—hp;il "'filyplfl - <€;i27"'7in;p27"‘7pn)f7jl7p;1
= (pb(e;i%‘"Jin;pQJ"wpn))\Ilil
= (e;il>i27-"ain;plap27"'7pn)'

Thus

(6)]‘"@-”@:1 fin—lvp.;11 NN fi1,p;1fa71 = (a; il, cee ,in;pl, cee ,pn) .
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(h) Note that f;), = (p)t; = (p)pif and
((a™Hh) f = (@ Dhiws) f = (a™hit; = far

for all 4. Thus for any ¢ = (a;iy,...,%;p1,--.,Pn) We have

()[(Pn )i -+ (1 )n (a R f =,
(e)[(e®)']f =0

Thus ® : ¥ — M is injective: reduced decompositions are unique.

4. Existence

Let D be the set of all elements of M which admit decompositions. Thus 1 € D.
Now M is generated by

(A)p U U(Pz-)w-

Lemma 0.3. Shifting. Say i, €1, p, € P, for 1 < a < n. For each a € A there
evista' € A and pl, € P, 1 < a < n, such that

(P14 - - - (Pn) i, (@)l = (a)R(PY) iy - - - (07) i -

Moreover, p, # e;, = pl, # €.

Proof. (Induction) Since (a)h = (a)h;,¢;,, there exist a, € A and p!, € P;, such
that p,(a)hi, = (an)hi,pl,. Thus (pn)e:, (a)h = (a,)h(p),)ei,- O

It follows that D - (A)h C D. Similarly, D - (P;)¢; € D. The case i, # i is trivial;
the case i,, = ¢ follows as in the Lemma.

5. Conclusion Each x € M has a unique reduced decomposition o, so that

n

v =(a)h [ (a)ra

a=1

with a € A and p, € P, — {e;,}. Any other decomposition ¢’ for x must have
l(¢") > l(o), since any non-reduced decomposition can be progressively shortened
using Lemma 0.3 to yield a reduced decomposition.

6. Consequences

(a) h = h;p; is injective.
If (a)h = (a’)h = z in M, then (a) and (a’) are both reduced decompositions
for z, so a = a/ by uniqueness.



(b)

Each ¢; : M; — M is injective.

Since h is injective, we have that ¢; must be injective on (A)h; C M;. Now
suppose (z)p; = (2')g; for © = (a) hip, 2’ = (d')hp', where p,p’ € P, and
a,a’ € A. Thus z = (a)h - (p)g; = (')h - (p')¢; € M has two decompositions:
(a;;p) [or (a), when p = ¢;] and (a’;4;p') [or (a’), when p’ = ¢;]. By uniqueness,
in any of these cases we have a = a’ and p =p', so x = 2’.

For i # j, (M) 0 (M;)p; = (A)h.

Clearly (A)h = (A)hip; C (M;)p;. So suppose z € (M;)p; N (M;)p;. Then z
has reduced decompositions (a;i;p) [or (a), when p = ¢;] and (a’; j; p') [or (d'),
when p’ = e;]. By uniqueness this means that p = e;, p’ = ¢; and a = /. Thus
z = (a)h.

Conventions. After suitable identifications we can assume that M; C M for
alli eI, AC M, M is generated by the M,’s and M; N M; = A, for all i # j.

Suppose x € M has reduced decomposition

o= (a;i1,...,in;P1y--+Dn) -

Considering the above identifications we may write

T =apy - pn

where a € A, p, € P;, — {1}, with all i, # iq41.
If 4y # i, then

i (Cbpr“pn)(apr"pn)

= (aad")(py - P) (1 Pn)
is also reduced. By induction we conclude that x must have infinite period.
On the other hand, if iy = i,, then p,ap;' = (puap:) - p2- - pn_1, Where
pnapy = a'p} for pj € P, d’ € A.
Thus p,xp, ! has length n—1 or n—2 depending on whether p/ # ¢;, or p' = ¢;, .
Thus: every element of finite order in M is conjugate to an element of finite
order in some particular M;.



7. Well-positioned Subgroups. Continuing with the same conventions, suppose
that we have subgroups N; < M; for each ¢ and a fixed subgroup B < A such that

N;NA =B, for each 7 .

Lemma 0.4. For each i a transversal ]5z to B in N; can be extended to a transversal
P; to A in M;.

Proof. For 2,y € P, suppose Az = Ay. Since 2,y € N;, we have zy~! € ANN; = B,
SO T =Y. O]

Theorem 0.5. (Bourbaki, p. 167) The subgroup of M generated by the N;’s is
1somorphic to
N = *BN’i .

Proof. Choose transversals as in the Lemma. We have inclusions s; : N; — M
which obviously agree on B. Let ¢; : N; — N be the canonical maps (which we have
proved must be injections). By the universal property of N there exists a unique
map g : N — M such that ;g = s; for all 7.

Now let z € ker(g). As an element of N, z thus has a canonical form z =
b(t1) i, -+~ (tn)s,, where b = by); for all i and the t; € P, C By, say. Apply-
ing the inclusions s;, we get

1= (2)g="0bt;---1, .
Since (by our choice of transversals) this is a canonical form in M, we must have
n=0and b=1. Thus z =1 and g is injective. O
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