Amalgamation of Groups

We basically follow Bourbaki, Algebra - I, §7.3 [1].

1. Let $\{M_i : i \in I\}$ be a family of groups. For another group A we suppose that we have injective homomorphisms

$$h_i: A \to M_i$$
.

Note that we may assume that A and the M_i 's are mutually disjoint.

Let P_i be a right transversal of $(A)h_i$ in M_i , with $P_i \cap (A)h_i = \{e_i\}$, the identity in M_i . For each $z \in M_i$ there are unique $a \in A$ and $p \in P_i$ with

$$z = (a)h_i p .$$

2. Presentations.

Suppose that $M = \langle X_i | R_i \rangle$. Once more we may assume that the X_i 's are mutually disjoint. Thus

$$M_i \simeq \operatorname{Fr}(X_i) / \operatorname{N}(R_i)$$

Let $\pi_i : \operatorname{Fr}(X_i) \to M_i$ be the natural map, so that $\ker(\pi_i) = \operatorname{N}(R_i)$ is the normal subgroup generated by the relator set R_i in $\operatorname{Fr}(X_i)$.

Let $X = \bigcup_i X_i$. For each *i* there is a natural injection $\operatorname{Fr}(X_i) \hookrightarrow \operatorname{Fr}(X)$. In fact, if we construct free groups in the usual way from sets of reduced words, we can even assume that each $\operatorname{Fr}(X_i)$ is a *subgroup* of $\operatorname{Fr}(X)$ (usually not of finite index).

Now specify a set A_{gen} of generators for A. For each $a \in A_{gen}$ and $i \in I$, choose a word $w(a, i) \in Fr(X_i) \subseteq Fr(X)$ such that

$$w(a,i)\pi_i = (a)h_i \in M_i$$
.

Next take

$$R = \bigcup_{i} R_{i} \cup \{ w(a,i) w(a,j)^{-1} : a \in A_{gen}, i, j \in I \} .$$

Definition 0.1. The amalgamated product of the groups M_i along the subgroup A is

$$M := \operatorname{Fr}(X)/\operatorname{N}(R)$$
.

Let $\pi : Fr(X) \to M$ be the natural map.

Remarks. The group M may be denoted

$$*_A M_i$$

although this suppresses the crucial nature of the isomorphisms h_i .

The special relations in R effectively identify all copies of A in the M_i .

Theorem 0.2. [Pushouts] M is universal for families of maps $t_i : M_i \to G$ which agree on the subgroups $(A)h_i$:

If $h_i t_i = h_j t_j : A \to G$ for all $i, j \in I$, then there exists a unique homomorphism $f: M \to G$ such that $\varphi_i f = t_i$ for all $i \in I$.

Proof.

(a) We may define

$$\begin{array}{rccc} \varphi_i : M_i & \to & M \\ & x & \mapsto & x, & x \in X_i \end{array}$$

since each $R_i \subseteq R$. We don't yet know that φ_i is injective, because of the special relations in R.

(b) Those special relations do guarantee that in M we have

$$(a)h_i\,\varphi_i = (a)h_j\,\varphi_j$$

for all $i, j \in I$ and $a \in A$. Thus we have a single map

$$h = h_i \varphi_i : A \to M$$

for all $i \in I$.

(c) Now suppose $h_i t_i = h_j t_j : A \to G$ for all $i, j \in I$ and some general group G. Clearly M is generated by its subgroups $(M_i)\varphi_i$, so we are forced to define $f : M \to G$ so that $(x)\pi_i\varphi_i f = (x)\pi_i t_i$, for all $x \in X_i$. But since t_i is a homomorphism, all relations from R_i are satisfied when transferred to G. The remaining relations in R have the form $w(a, i)w(a, j)^{-1} = 1$. These are satisfied in G since $(a)h_i t_i = (a)h_j t_j$. Thus f is uniquely well-defined. \Box **Remark**. We have that the universal object M exists. By standard arguments, M is unique to isomorphism, given the injective maps $h_i : A \to M_i$.

For more detailed structure, we must exploit explicit representations of M.

(d) Motivated by 'intuitive' calculations in M, we now consider finite sequences

$$\sigma = (a; i_1, \ldots, i_n; p_1, \ldots, p_n)$$

where $a \in A$, $i_{\alpha} \in I$ and $p_{\alpha} \in P_{i_{\alpha}}$, for $1 \leq \alpha \leq n$. We say

- σ has length $l(\sigma) = n$. For $n = 0, \sigma = (a)$.
- σ is a decomposition for $x \in M$ if

$$x = (a)h \cdot \prod_{\alpha=1}^{n} (p_{\alpha})\varphi_{i_{\alpha}}$$

- σ is reduced if $i_{\alpha} \neq i_{\alpha+1}$, for $1 \leq \alpha < n$ and $p_{\alpha} \neq e_{i_{\alpha}}$ for $1 \leq \alpha \leq n$. In particular, if e is the identity in A, then (e) is a reduced decomposition for the identity $1 \in M$. More generally, (a) is a reduced decomposition for $(a)h \in M$.
- (e) Let Σ be the set of all reduced decompositions σ . Define

$$\Phi: \Sigma \to M$$

$$\sigma = (a; i_1, \dots, i_n; p_1, \dots, p_n) \mapsto (a)h \cdot \prod_{\alpha=1}^n (p_\alpha)\varphi_{i_\alpha}$$

(We want to show that Φ is a bijection.) For fixed *i* let

$$\Sigma_i := \{ \sigma \in \Sigma : \sigma = (e; i_1, \dots, i_n; p_1, \dots, p_n), \text{ where } i_1 \neq i, \text{ if } n \ge 1 \}.$$

Now we may define

$$\Psi_i: M_i \times \Sigma_i \to \Sigma$$

by

$$(z,\sigma) \mapsto \begin{array}{ll} (a;i_1,\ldots,i_n;p_1,\ldots,p_n), & \text{if } p = e_i;\\ (a;i_1,i_1,\ldots,i_n;p_i,p_1,\ldots,p_n), & \text{if } p \neq e_i, \end{array}$$

where $\sigma = (e; i_1, \ldots, i_n; p_1, \ldots, p_n)$ and $z = (a)h_i p$, with $a \in A$ and $p \in P_i$. It is easy to check that Ψ_i is well-defined and onto.

On the other hand, suppose $(z, \sigma)\Psi_i = (z', \sigma')\Psi_i$, for $\sigma' = (e; i'_1, \ldots, i'_m; p'_1, \ldots, p'_m)$ and $z' = (a')h_i p'$, with $a' \in A$ and $p' \in P_i$. Then a = a'. If $p = e_i$, then $i_1 \neq i$, so $p' = e_i$, m = n and indeed $\sigma = \sigma'$. If $p \neq e_i$, then similarly we must have $\sigma = \sigma'$. (f) Thus each Ψ_i is bijective. This lets use define for each $i \in I$ and $x \in M_i$ a mapping

$$\begin{array}{rccc} f_{i,x} : \Sigma & \to & \Sigma \\ (z,\sigma)\Psi_i & \mapsto & (x^{-1}z,\sigma)\Psi_i \end{array}$$

Clearly $f_{i,x}$ is bijective.

For each $a \in A$ we can also define

$$\begin{array}{rccc} f_a : \Sigma & \to & \Sigma \\ (a'; i_1, \dots, i_n; p_1, \dots, p_n) & \mapsto & (a^{-1} a'; i_1, \dots, i_n; p_1, \dots, p_n) \end{array}$$

Clearly f_a is also bijective.

It is easy to check that

- $f_{i,e_i} = 1_{\Sigma}$
- $f_{i,xy} = f_{i,x}f_{i,y}$
- for any $a \in A$ and $i \in I$, we have $f_a = f_{i,(a)h_i}$.

(g) Now let $G = \text{Sym}(\Sigma)$. We have homomorphisms

$$\begin{array}{rccc} t_i: M_i & \to & G \\ & x & \mapsto & f_{i,x} \end{array}$$

such that for all $a \in A$ and $i \in I$,

$$(a)h_i t_i = f_{i,(a)h_i} = f_a ,$$

independent of *i*. Thus there is a unique map $f: M \to G$ with $\varphi_i f = t_i$ for all *i*. Now let

$$\sigma = (a; i_1, \ldots, i_n; p_1, \ldots, p_n)$$

- In M_i we have $e_i = e_i e_i = (e)h_i e_i$. Thus if $\sigma = (e; i_1, \dots, i_n; p_1, \dots, p_n) \in \Sigma_i$, we must have $(e_i, \sigma)\Psi_i = (e; i_1, \dots, i_n; p_1, \dots, p_n) = \sigma$. In particular, $(e_i, (e))\Psi_i = (e)$.
- Suppose $p_1 \in P_{i_1} \{e_{i_1}\}$. Then

$$(e)f_{i_1,p_1^{-1}} = (p_1,(e))\Psi_{i_1} = (e,i_1;p_1)$$
.

• By induction we get

$$(e) f_{i_n, p_n^{-1}} f_{i_{n-1}, p_{n-1}^{-1}} \dots f_{i_1, p_1^{-1}} = (e; i_2, \dots, i_n; p_2, \dots, p_n) f_{i_1, p_1^{-1}} = (p_1, (e; i_2, \dots, i_n; p_2, \dots, p_n)) \Psi_{i_1} = (e; i_1, i_2, \dots, i_n; p_1, p_2, \dots, p_n) .$$

Thus

$$(e)f_{i_n,p_n^{-1}}f_{i_{n-1},p_{n-1}^{-1}}\dots f_{i_1,p_1^{-1}}f_{a^{-1}} = (a;i_1,\dots,i_n;p_1,\dots,p_n).$$

(h) Note that $f_{i,p} = (p)t_i = (p)\varphi_i f$ and

$$((a^{-1})h)f = ((a^{-1})h_i\varphi_i)f = (a^{-1})h_it_i = f_{a^{-1}}$$

for all *i*. Thus for any $\sigma = (a; i_1, \ldots, i_n; p_1, \ldots, p_n)$ we have

$$(e)[(p_n^{-1})\varphi_{i_n}\cdots(p_1^{-1})\varphi_{i_1}(a^{-1})h]f = \sigma ,$$

or

$$(e)[(\sigma\Phi)^{-1}]f = \sigma$$

Thus $\Phi: \Sigma \to M$ is injective: reduced decompositions are unique.

4. Existence

Let D be the set of all elements of M which admit decompositions. Thus $1 \in D$. Now M is generated by

$$(A)h \cup \bigcup_i (P_i)\varphi$$

Lemma 0.3. Shifting. Say $i_{\alpha} \in I$, $p_{\alpha} \in P_{i_{\alpha}}$, for $1 \leq \alpha \leq n$. For each $a \in A$ there exist $a' \in A$ and $p'_{\alpha} \in P_{i_{\alpha}}$, $1 \leq \alpha \leq n$, such that

$$(p_1)\varphi_{i_1}\ldots(p_n)\varphi_{i_n}(a)h = (a')h(p'_1)\varphi_{i_1}\ldots(p'_n)\varphi_{i_n}$$

Moreover, $p_{\alpha} \neq e_{i_{\alpha}} \Rightarrow p'_{\alpha} \neq e_{i_{\alpha}}$.

Proof. (Induction) Since $(a)h = (a)h_{i_n}\varphi_{i_n}$, there exist $a_n \in A$ and $p'_n \in P_{i_n}$ such that $p_n(a)h_{i_n} = (a_n)h_{i_n}p'_n$. Thus $(p_n)\varphi_{i_n}(a)h = (a_n)h(p'_n)\varphi_{i_n}$.

It follows that $D \cdot (A)h \subseteq D$. Similarly, $D \cdot (P_i)\varphi_i \subseteq D$. The case $i_n \neq i$ is trivial; the case $i_n = i$ follows as in the Lemma.

5. Conclusion Each $x \in M$ has a unique reduced decomposition σ , so that

$$x = (a)h \prod_{\alpha=1}^{n} (p_{\alpha})\varphi_{i_{\alpha}}$$

with $a \in A$ and $p_{\alpha} \in P_{i_{\alpha}} - \{e_{i_{\alpha}}\}$. Any other decomposition σ' for x must have $l(\sigma') > l(\sigma)$, since any non-reduced decomposition can be progressively shortened using Lemma 0.3 to yield a reduced decomposition.

6. Consequences

(a) $h = h_i \varphi_i$ is injective.

If (a)h = (a')h = x in M, then (a) and (a') are both reduced decompositions for x, so a = a' by uniqueness.

(b) Each $\varphi_i : M_i \to M$ is injective.

Since h is injective, we have that φ_i must be injective on $(A)h_i \subseteq M_i$. Now suppose $(x)\varphi_i = (x')\varphi_i$ for $x = (a)h_ip$, $x' = (a')h_ip'$, where $p, p' \in P_i$ and $a, a' \in A$. Thus $z = (a)h \cdot (p)\varphi_i = (a')h \cdot (p')\varphi_i \in M$ has two decompositions: (a; i; p) [or (a), when $p = e_i$] and (a'; i; p') [or (a'), when $p' = e_i$]. By uniqueness, in any of these cases we have a = a' and p = p', so x = x'.

- (c) For $i \neq j$, $(M_i)\varphi_i \cap (M_j)\varphi_j = (A)h$. Clearly $(A)h = (A)h_i\varphi_i \subseteq (M_i)\varphi_i$. So suppose $z \in (M_i)\varphi_i \cap (M_j)\varphi_j$. Then z has reduced decompositions (a; i; p) [or (a), when $p = e_i$] and (a'; j; p') [or (a'), when $p' = e_j$]. By uniqueness this means that $p = e_i$, $p' = e_j$ and a = a'. Thus z = (a)h.
- (d) **Conventions**. After suitable identifications we can assume that $M_i \subseteq M$ for all $i \in I$, $A \subseteq M$, M is generated by the M_i 's and $M_i \cap M_j = A$, for all $i \neq j$.
- (e) Suppose $x \in M$ has reduced decomposition

$$\sigma = (a; i_1, \ldots, i_n; p_1, \ldots, p_n) .$$

Considering the above identifications we may write

$$x = ap_1 \cdots p_n$$

where $a \in A$, $p_{\alpha} \in P_{i_{\alpha}} - \{1\}$, with all $i_{\alpha} \neq i_{\alpha+1}$. If $i_1 \neq i_n$, then

$$x^{2} = (ap_{1}\cdots p_{n})(ap_{1}\cdots p_{n})$$
$$= (aa')(p'_{1}\cdots p'_{n})(p_{1}\cdots p_{n})$$

is also reduced. By induction we conclude that x must have infinite period.

On the other hand, if $i_1 = i_n$, then $p_n x p_n^{-1} = (p_n a p_1) \cdot p_2 \cdots p_{n-1}$, where $p_n a p_1 = a' p'_1$ for $p'_1 \in P_{i_1}, a' \in A$.

Thus $p_n x p_n^{-1}$ has length n-1 or n-2 depending on whether $p' \neq e_{i_1}$ or $p' = e_{i_1}$. **Thus**: every element of finite order in M is conjugate to an element of finite order in some particular M_j . 7. Well-positioned Subgroups. Continuing with the same conventions, suppose that we have subgroups $N_i < M_i$ for each *i* and a fixed subgroup B < A such that

$$N_i \cap A = B$$
, for each *i*.

Lemma 0.4. For each *i* a transversal \tilde{P}_i to *B* in N_i can be extended to a transversal P_i to *A* in M_i .

Proof. For $x, y \in \tilde{P}_i$ suppose Ax = Ay. Since $x, y \in N_i$, we have $xy^{-1} \in A \cap N_i = B$, so x = y.

Theorem 0.5. (Bourbaki, p. 167) The subgroup of M generated by the N_i 's is isomorphic to

$$N := *_B N_i .$$

Proof. Choose transversals as in the Lemma. We have inclusions $s_i : N_i \hookrightarrow M$ which obviously agree on B. Let $\psi_i : N_i \to N$ be the canonical maps (which we have proved must be injections). By the universal property of N there exists a unique map $g : N \to M$ such that $\psi_i g = s_i$ for all i.

Now let $z \in \ker(g)$. As an element of N, z thus has a canonical form $z = \tilde{b}(\tilde{t}_1)\psi_{i_1}\cdots(\tilde{t}_n)\psi_{i_n}$, where $\tilde{b} = b\psi_i$ for all i and the $t_j \in \tilde{P}_{i_j} \subseteq P_{i_j}$, say. Applying the inclusions s_{i_j} we get

$$1 = (z)g = b\tilde{t}_1 \cdots \tilde{t}_n .$$

Since (by our choice of transversals) this is a canonical form in M, we must have n = 0 and b = 1. Thus z = 1 and g is injective.

References

 N. BOURBAKI, Elements of Mathematics, Algebra I, Hermann, Paris, (Addison-Wesley, Reading, Mass.), 1974.