Notes on Commutative Rings

1 A hierarchy of commutative rings

$$
\text { Euc. } \mathrm{R} \Rightarrow \text { P.I.D. } \Rightarrow \text { U.F.D. } \Rightarrow \text { Int. D. } \Rightarrow \text { Comm.R. }
$$

[Comm.R.] Commutative Ring R with $1 \neq 0$.

1. The ideal generated by $\left\{a_{1}, \ldots, a_{n}\right\}$ is the set of all R-linear combinations $r_{1} a_{1}+\ldots+$ $r_{n} a_{n}$. A principal ideal (a) has one such generator.
2. The set R^{\times}of units is a multiplicative group. (Units are the elements with multiplicative inverses. They cannot be zerodivisors. A zerodivisor is an $a \neq 0$ such that $a b=0$ for some other $b \neq 0$.)
3. (a) A proper ideal I is

- prime if $a b \in I \Rightarrow a \in I$ or $b \in I$;
- maximal if $I \subseteq J \subseteq R \Rightarrow J=I$ or $J=R$.
[We allow $I=(0)$.]
(b) Maximal ideal \Rightarrow Prime ideal.

In $\mathbb{Z}[x], I=(x)$ is prime but not maximal. Note $\mathbb{Z}[x] /(x) \simeq \mathbb{Z}$.
(c) I maximal $\Leftrightarrow R / I$ field.
I prime $\Leftrightarrow R / I$ integral domain.
(d) If ideal $I \neq R$, then there exists a maximal ideal M with $I \subseteq M \subset R$.
(e) Thus every non-unit b (which is in a proper ideal (b)) must lie in a maximal ideal.
4. More on Maximal Ideals, Local Rings, Radical Ideals
(a) Note: If $a \notin M$, a maximal ideal, then $R=M+R a$, so that a is a unit $\bmod M$. Thus $R \backslash M$ consists of units $\bmod M$.
(b) Suppose M is a proper ideal in R. We say that R is a local ring if M is the unique maximal ideal in R.

- $R \backslash M$ consists entirely of units in $R \Leftrightarrow M$ unique maximal. (For \Leftarrow : if x is a non-unit, then (x) is a proper ideal, hence lies in some maximal ideal, hence is contained in M by uniqueness.)
- If M is maximal and $1+M$ consists of units, then M is the unique maximal ideal and R is a local ring. (For if $u \in R \backslash M$, then $1=x u+m$ for some $m \in M, x \in R$, so $x u=1+(-m)$ is a unit, so u is a unit; see previous item.)
(c) The nilradical Nil of R consists of all nilpotent elements of R ($x^{n}=0$ for some positive integer n). It's easy to prove this is an ideal; and R / Nil has no non-zero nilpotent elements. Further, Nil is the intersection of all prime ideals in R. (Note: \supseteq involves the construction of a suitable prime ideal; see Reid for a Zorn's Lemma argument involving multiplicative sets.)
(d) The Jacobson radical Jac of R is the intersection of all maximal ideals. Furthermore, $x \in$ Jac if $-\mathrm{f} 1-x y$ is a unit in R for all $y \in R$.
(e) The radical of an ideal I is

$$
\sqrt{I}:=\left\{x \in R: x^{k} \in I, \text { for some } k \geqslant 1\right\} .
$$

Thus \sqrt{I} is an ideal; $I \subseteq \sqrt{I}$; and \sqrt{I} is the intersection of all the prime ideals containing I.
Thus $\sqrt{R}=R$ and $\sqrt{(0)}=$ Nil.
5. (a) The sum of ideals I, J is the ideal

$$
I+J:=\{a+b \mid a \in I, b \in J\}
$$

Eg. If M maximal, and $a b \in M$, then each of $M+R a, M+R b$ equals M or R. If both equal R, then $1=m_{1}+r_{1} a=m_{2}+r_{2} b$; multiply to get $1 \in M$, a contradiction. Thus maximal \Rightarrow prime.
(b) Ideals I, J are relatively prime if $I+J=R$.
6. Polynomials. The polynomial ring $R[x]$ is determined by the following universal property: there is a ring embedding $\mu: R \rightarrow R[x]$ and an element $x \in R[x]$ such that for any homomorphism $\varphi: R \rightarrow S$ and specific element $c \in S$ there exists a unique homomorphism $\varphi_{c}: R[x] \rightarrow S$ with $\varphi=\mu \varphi_{c}$ (compose left to right) and $x \varphi_{c}=c$.

If I is a proper ideal in R, we thus have

$$
\begin{equation*}
R[x] / I[x] \simeq(R / I)[x] \tag{1}
\end{equation*}
$$

That is, factor by the ideal (in $R[x]$) of all polynomials with coefficients in I.

7. Eisenstein:

If M is maximal in R and

$$
f(x)=a_{n} x^{n}+\ldots+a_{0} \quad(n \geqslant 1)
$$

with $a_{n} \notin M, a_{i} \in M$ for all $i<n$, and $a_{0} \notin M^{2}$, then f is irreducible over R. (That is, $f=g h$ forces g or h to be a constant polynomial.)
So suppose $g=\sum_{0}^{r} b_{i} x^{i}$, $h=\sum_{0}^{s} c_{i} x^{i}$, where $r+s=n=\operatorname{deg} f$, with $r, s>0$. Since $a_{0} \in M$ but $a_{0} \notin M^{2}$, we can w.l.o.g. assume $b_{0} \in M$ and $c_{0} \notin M$. (Note that $a_{0} \equiv b_{0} c_{0} \equiv 0$ in the field R / M.) But $a_{n}=b_{r} c_{s} \notin M$, so let j be minimal with $b_{j} \notin M$. Thus $j \geqslant 1$. Consider

$$
a_{j}=b_{0} c_{j}+\ldots+b_{j-1} c_{1}+b_{j} c_{0} \quad(\bmod M)
$$

This gives a contradiction.
8. The product $I J$ of ideals I, J consists of all finite sums of products $a b$, where $a \in$ $I, B \in J$.

We similarly define the product of ideals I_{1}, \ldots, I_{m}. Always we have for ideals J, I_{k} :
(a) $I_{1} \ldots I_{m}=\left(I_{1} \ldots I_{m-1}\right) I_{m}$.
(b) $I_{1} \ldots I_{m} \subseteq I_{1} \cap \ldots \cap I_{m}$.
(c) $\left(I_{1}+J\right)\left(I_{2}+J\right) \ldots\left(I_{m}+J\right) \subseteq\left(I_{1} \ldots I_{m}\right)+J$.
9. Theorem. Let I_{1}, \ldots, I_{m} be pairwise relatively prime ideals, and for $1 \leqslant k \leqslant m$ let

$$
\widehat{I}_{k}:=\bigcap_{i \neq k} I_{i}=I_{1} \cap \ldots \cap I_{k-1} \cap I_{k+1} \cap \ldots \cap I_{m}
$$

Then
(a) $I_{1} \ldots I_{m}=I_{1} \cap \ldots \cap I_{m}$.
(b) For $1 \leqslant k \leqslant m, I_{k}$ and \widehat{I}_{k} are relatively prime.

Proof. (Induction on m.)
(i) $\underline{m=2}$. Part (b) follows by definition. Since $R=I_{1}+I_{2}$, there exist $a \in I_{1}, b \in I_{2}$ with $1=a+b$. Thus $x \in I_{1} \cap I_{2} \Rightarrow x=a x+x b \in I_{1} I_{2}$. This proves (a).
(ii) For $m \geqslant 2$, we may assume by induction that for $1 \leqslant k \leqslant m$,

$$
\widehat{I}_{k}=I_{1} \ldots I_{k-1} I_{k+1} \ldots I_{m}
$$

Thus

$$
R=\left(I_{k}+I_{1}\right) \ldots\left(I_{k}+I_{k-1}\right)\left(I_{k}+I_{k+1}\right) \ldots\left(I_{k}+I_{m}\right) \subseteq I_{k}+\widehat{I}_{k} \subseteq R .
$$

This proves part (b). Next note that

$$
\begin{aligned}
I_{1} \ldots I_{m} & =\left(I_{1} \ldots I_{m-1}\right) I_{m} & & \\
& =\widehat{I}_{m} I_{m} & & \text { (induction, (a)) } \\
& =\widehat{I}_{m} \cap I_{m} & & \text { (induction, } m=2 \text {) } \\
& =\left(I_{1} \cap \ldots \cap I_{m-1}\right) \cap I_{m} & & \text { (induction). }
\end{aligned}
$$

This end the proof.
Note that if I_{k}, \widehat{I}_{k} are relatively prime, then I_{k}, I_{i} are relatively prime for all $i \neq k$, since $I_{i} \supseteq \widehat{I}_{k}$, so that $I_{i}+I_{k}=R$.
10. Chinese Remainder Theorem. Suppose that I_{1}, \ldots, I_{m} are pairwise relatively prime ideals. Then the natural mapping

$$
R / \bigcap_{k=1}^{m} I_{k} \rightarrow R / I_{1} \times \ldots \times R / I_{m}
$$

is an isomorphism.
Proof. It's easy to check this mapping is well-defined and $1-1$. By the previous theorem, for $1 \leqslant k \leqslant m$ there exist $a_{k} \in I_{k}, b_{k} \in \widehat{I}_{k}$ with $1=a_{k}+b_{k}$. For any $r_{1}, \ldots, r_{m} \in R$, let $r=r_{1} b_{1}+\ldots+r_{m} b_{m}$. Then $r \equiv r_{k}\left(\bmod I_{k}\right)$ for $1 \leqslant k \leqslant m$, so the above mapping is onto.
[Int. D] Integral Domain - no zerodivisors, so that cancellation holds.

1. A non-unit, non-zero element p is

- irreducible - if $p=a b \Rightarrow a$ or b is a unit;
- prime - if $p|(a b) \Rightarrow p| a$ or $p \mid b$.

Thus p prime $\Rightarrow p$ irreducible, but not conversely in general, because of (c) below.
2. Results on Principal Ideals.
(a) $(a)=(b)$ if and only if a, b are associates. Thus the generator of a principal ideal is unique to unit factors.
(b) A non-zero principal ideal (p) is a prime ideal if and only if the generator p is prime.
(c) A non-zero principal ideal (m) is maximal (among principal ideals in R) if and only if the generator m is irreducible.
Note that if (m) is maximal, then it is maximal among principal ideals. However, the converse may fail if there are non-principal ideals J with

$$
(m) \subset J \subset R
$$

Of course, this converse will hold in a P.I.D. (see below).
3. If R is an integral domain, so is $R[x]$ (easy: look at leading coefficients).
4. Any integral domain R embeds in a unique field of fractions $K=$ Frac R. Any isomorphism $\varphi: R \rightarrow S$ (of integral domains) extends uniquely to the respective fields of fractions. In a sense, the field of fractions is "minimal" with this property.
5. Gauss' Lemma for an Integral Domain R. Any prime $p \in R$ remains prime in $R[x]$.

Proof. Let $p \in R$ be prime, so that $I=(p)$ is a prime ideal and R / I is an integral domain. Suppose $p \mid f g$ for $f, g \in R[x]$, say $f g=p h$. Passing to $R[x] / I[x]$, we get $f g=0$ in the integral domain $(R / I)[x]$ (see (1). Thus f or G is in $I[x]$, so p divides one or the other.

[U.F.D.] Unique Factorization Domain.

1. By definition each $x \neq 0$ has an essentially unique factorization into irreducibles.
(a) If p irreducible and $p \mid a b$, then p must appear in the factorization of either a or b. Thus

$$
\text { irreducible } \Rightarrow \text { prime. }
$$

(b) Alternatively, one may define a U.F.D. as an integral domain in which factorizations into irreducibles exist and in which irreducibles are prime.
In any case, in U.F.D.'s we have

$$
\text { irreducible } \Leftrightarrow \text { prime. }
$$

2. Any two elements in a U.F.D have a gcd and lcm, unique to units.
3. For any $f \in R[x]$, the content

$$
\delta=\delta(f):=\operatorname{gcd}(\{\text { all coefficients of } f\})
$$

The content is thus determined to associates, and $f=\delta f_{1}$ for some primitive polynomial $f_{1} \in R[x]$. A primitive polynomial is one whose content is a unit. Consequently, it cannot be 0 .
4. Gauss' Lemma for a UFD R. The product of two primitive polynomials f and g is also primitive.
Standard Proof. Let $f=\sum a_{i} x^{i}, g=\sum b_{i} x^{i}$. Say $f g=\delta h$, for $\delta \in R$ and $h=\sum c_{i} x^{i} \in R[x]$. Suppose some prime $p \mid \delta$. Since f, g primitive, there exist 'first' coeffs. a_{r}, b_{s} not divisible by p. But then $\delta c^{r+s}=a_{r} b_{s}+$ terms div. by p : contradiction. So δ is a unit and $f g$ is primitive.
Another Proof. If $f g$ not primitive, there exists a prime $p \mid(f g)$. By Gauss' Lemma for integral domains this means $p \mid f$ or $p \mid g$, contradicting primitivity of one or the other poly.
5. Corollaries.
(a) The content of a product of polynomials is the product of the contents.
(b) Suppose U.F.D. R has field of fractions K. Suppose $h \in R[x]$ factors over $K[x]$ as $h=f g$. Then there is a $u \in K$ with $u f, u^{-1} g \in R[x]$. In short, h actually factors in the base ring $R[x]$.
Proof. For any poly. in $K[x]$ we can find a common denom. for the coeffs. and extract a gcd for the new numerators. So there exist $a, b, c, d \in R$ and primitive $f_{1}, g_{1} \in R[x]$ with

$$
f=\frac{a}{b} f_{1}, g=\frac{c}{d} g_{1} .
$$

Thus

$$
h=\frac{\alpha}{\beta} f_{1} g_{1},
$$

where $(a c) /(b d)=\alpha / \beta$, with α, β coprime in R. Thus $\beta h=\alpha f_{1} g_{1}$. If some prime $p \mid \beta$ we get $p \mid\left(f_{1} g_{1}\right)$, again contradicting Gauss' Lemma for integral domains, or the fact that $f_{1} g_{1}$ is primitive. Hence β is a unit in R and so h factors in $R[x]$ as $h=\left(\alpha f_{1}\right)\left(\beta^{-1} g_{1}\right)$. (Thus $u=b \alpha / a$.)
(c) If a polynomial with coefficients in \mathbb{Z} is irreducible in $\mathbb{Z}[x]$, then it is irreducible in $\mathbb{Q}[x]$.
(d) If R is a U.F.D., then so is $R[x]$ (and so also $R\left[x_{1}, \ldots, x_{n}\right]$).

Proof. Let K be the field of fractions for R.
(i) if $f \in R[x]$ is irred., then either $\operatorname{deg}(f)=0$, whence f is irreducible in R, or $\operatorname{deg}(f)>0$, whence f is irreducible in $K[x]$ and is furthermore primitive in $R[x]$ (else the content $\delta(f)$ is a non-trivial factor).
(ii) now any poly. $g \in K[x]$ fcators into irreducibles in $K[x]$, since the latter is a Euclidean domain (hence P.I.D., hence U.F.D.: see below). Using (i) we can now
rescale scalars throughout any factorization, and exploit the essential uniqueness in $K[x]$, to get unique factorization into irreducibles in $R[x]$.
(e) Example in $\mathbb{Z}[x]: 6 x^{3}-24 x^{2}-24 x-30=2 \cdot 3 \cdot\left(x^{2}+x+1\right) \cdot(x-5)$.

[P.I.D.] Principal Ideal Domain.

1. From above, a proper non-zero ideal here is prime if and only if it is maximal.
2. Here is a proof, appropriate to this context, that p irreducible implies p prime.

Proof. Say $p \mid a b$ and let $(q):=(a)+(p)$. Thus $p=x q$. If x is a unit, then $(p)=(q)$, so $a \in(p)$ and thus $p \mid a$. If q is a unit, then $1=y a+z p$, so $b=y(a b)+(z b) p$, so $p \mid b$.
3. A P.I.D. satisfies the A.C.C. on ideals. Indeed,

$$
\left(a_{1}\right) \subseteq\left(a_{2}\right) \subseteq \ldots \subseteq\left(a_{i}\right) \subseteq \ldots
$$

implies there exists n with $\left(a_{i}\right)=\left(a_{n}\right)$ for all $i \geqslant n$. (The union is an ideal (b) and $b \in\left(a_{n}\right)$ for some n.)
4. The [A.C.C.] prevents an infinite sequence a_{1}, a_{2}, \ldots where each a_{i} is a multiple of a_{i+1}. In turn, this implies factorization onto irreducibles. Now if there are two such factorizations for

$$
x=p_{1} \ldots p_{r}=q_{1} \ldots q_{s}
$$

we may suppose $\left(p_{1}\right)$ is the minimal ideal among all $\left(p_{j}\right),\left(q_{j}\right)$. Now work in the field $R /\left(p_{1}\right)$ to show that $\left(p_{1}\right)=\left(q_{j}\right)$ for some j. Essential uniqueness soon follows. This explains why

$$
\text { P.I.D. } \Rightarrow \text { U.F.D. }
$$

[Euc. R.] Euclidean Rings.

1. These are P.I.D.'s. Examples include \mathbb{Z} and $k[x]$, for any field k.

2 Fourth Isomorphism Theorem

. Suppose $\varphi: R \rightarrow S$ be a ring epimorphism (mapping 1_{R} to 1_{S} when rings have units.) Let $K=\operatorname{ker} \varphi$. On

$$
\mathcal{L}_{R}:=\{\text { ideals } J: K \subseteq J \subseteq R\}
$$

we define $\widetilde{J}:=\varphi(J)$; and on

$$
\mathcal{L}_{S}:=\{\text { ideals } L: L \subseteq S\}
$$

we let $L^{*}:=\varphi^{-1}(L)$. Then

1. $S \simeq R / K$.
2. $J \mapsto \widetilde{J}$ and $L \mapsto L^{*}$ are well-defined mappings respecting inclusion of ideals; and $J=(\widetilde{J})^{*}$ and $L=\widetilde{\left(L^{*}\right)}$.
3. \mathcal{L}_{R} and \mathcal{L}_{S} are isomorphic as partially ordered sets.
4. J is maximal in R if and only \widetilde{J} is maximal in S.
5. J is prime in R if and only \widetilde{J} is prime in S.
6. $R / J \simeq S / \tilde{J}$.
7. $\left(\widetilde{J_{1} \cap J_{2}}\right)=\widetilde{J}_{1} \cap \widetilde{J}_{2}$.
8. $\left(\widetilde{J_{1}+J_{2}}\right)=\widetilde{J}_{1}+\widetilde{J}_{2}$.

Proof. This is all routine. The condition that $K \subseteq J$ eliminates problems.

3 Modules and Integrality

1. Let A be a commutative ring with identity $1=1_{A}$. Recall that

- an A-module M is finitely generated, or just finite, if it has a finite spanning set.
- the A-module endomorphisms $\lambda: M \rightarrow M$ form a ring End M with composition as multiplication and with identity $\imath=1_{\mathrm{End} M}: M \rightarrow M$.
It is easy to see that scalar multiplication $a \lambda$, with $a \in A, \lambda \in \operatorname{End} M$, interacts as expected with addition and multiplication of endomorphisms. Thus End M is also an A-module, and in fact an A-algebra.
- M is said to be faithful as an A-module if $a m=0, \forall m \in M$, implies $a=0$. In this case, A embeds isomorphically in $\operatorname{End} M$ via the scalar mappings $\mu_{a}: M \rightarrow M$, where $\mu_{a}(m)=a m$.

2. Fix $\varphi \in \operatorname{End} M$ and let

$$
A[\varphi]:=\left\{a_{n} \varphi^{n}+a_{n-1} \varphi^{n-1}+\cdots+a_{1} \varphi+a_{0} \imath: a_{j} \in A, n \geqslant 0\right\}
$$

be the set of all polynomials in φ. Thus $A[\varphi]$ is the subring of $\operatorname{End} M$ generated by φ and all $a \imath$, in other words, the subalgebra generated by φ.
Note that M now becomes an $A[\varphi]$-module, taking $\varphi \cdot m:=\varphi(m)$.
3.

Theorem 3.1. The Determinant Trick
Suppose the finite A-module M is spanned by m_{1}, \ldots, m_{n}. Let $\varphi: M \rightarrow M$ be an A-module endomorphism such that $\varphi(M) \subseteq I M$ for some ideal I of A. (Of course, this always holds for $I=(1)=A$.) Then φ satisfies some monic relation

$$
\begin{equation*}
\varphi^{n}+c_{1} \varphi^{n-1}+\cdots+c_{n-1} \varphi+c_{n} \imath=0 \tag{2}
\end{equation*}
$$

in $A[\varphi]$, with $c_{j} \in I^{j}$ (the product ideal) for $j=1, \ldots, n$,
Proof. For certain $a_{k j} \in I$ we have

$$
\varphi\left(m_{j}\right)=\sum_{j=1}^{n} a_{k j} m_{j}
$$

In $A[\varphi]$ this gives

$$
\begin{equation*}
\sum_{j=1}^{n}\left(\delta_{k j} \varphi-a_{k j} \imath\right)\left(m_{j}\right)=0 \tag{3}
\end{equation*}
$$

where $\delta_{k j} \in A$. Let the matrix $\Delta=\left[\delta_{k j} \varphi-a_{k j}\right]$ over the ring $A[\varphi]$ have adjoint $\operatorname{adj} \Delta=\left[b_{k j}\right]$. Thus for all l, j we have

$$
\sum_{k=1}^{n} b_{l k}\left(\delta_{k j} \varphi-a_{k j} \imath\right)=\delta_{l j} \operatorname{det}(\Delta)
$$

Apply this last result to each m_{j} and sum using (3) to conclude that all $\operatorname{det}(\Delta)\left(m_{j}\right)=0$. Thus $\operatorname{det}(\Delta)=0$ in $A[\varphi]$. Expand this determinant to get (2).

4. Examples

(a) Suppose $I=A$ and M is a free module with basis m_{1}, \ldots, m_{n}. Then the matrix for $\varphi \in \operatorname{End} M$ is $\left[a_{k j}\right]$, with characteristic polynomial

$$
\chi(t)=\operatorname{det}\left[\delta_{k j} t-a_{k j}\right] .
$$

Replacing t by φ (and 1_{A} by \imath) we get

$$
\operatorname{det}\left[\delta_{k j} \varphi-a_{k j} \imath\right]=0
$$

in End M. This is the Cayley-Hamilton Theorem.
(b) If A is a subring of B, then the determinant trick is the key to proving that the elements of B which are integral over A form a subring of B, i.e. the integral closure of A in B.

4 Finitely Generated Modules and Nakayama's Lemma

1. Nakayama's Lemma. Let V be a finitely generated R-module and I an ideal contained in the Jacobson radical of R (i.e. in the intersection of all maximal ideals). Then $I V=V$ implies $V=0$.
(For $V \neq 0$ let u_{1}, \ldots, u_{n} be a minimal set of generators; thus $u_{n}=a_{1} u_{1}+\ldots+a_{n} u_{n}$, for some $a_{j} \in I$; since a_{n} for instance is in the Jacobson radical, $1-a_{n}$ is a unit, which means that u_{n} is redundant: contradn.)
2. Let R be a local ring with maximal ideal I. Suppose W is an R-submodule of the R-module V, where V / W is finitely generated and such that $V=W+I V$. Then $V=W$.
3. If V is finite over R, then $V /(I V)$ is a finite dimensional vector space over the residue field $k=R / I$. And a spanning subset of this vector space lifts to a spanning subset of V considered as an R-module.

5 Finitely generated Algebras

Our sources are notes from Colin Ingalls, who in turn referred to www.mathreference.com. See also Miles Reid's book Undergraduate Commutative Algebra [2]. The key Theorem 5.2 below appears in that book in Section 4.2. Perhaps it makes sense to take that as the starting point for a talk.
1.

Lemma 5.1. Let R be a UFD which has infinitely many primes and is (embedded as) a subring of a field A. Suppose A is finitely generated as an R-algebra. Then A cannot be an algebraic extension of the fraction field F for R.
Proof. Since A is a field, we have $R \subseteq F \subseteq A$. We must understand the field extension $F \subseteq A$. So suppose A is algebraic over F and let $A=R\left[z_{1}, \ldots, z_{m}\right]$ as a finitely generated algebra over R.
Each z_{i} satisfies a monic polynomial $p_{i}(t)$ over F. Since R is a UFD, we have a least common multiple d for all denominators of coefficients in the various p_{i}. Thus each

$$
p_{i} \in \frac{1}{d} R[t] .
$$

Now let $S:=R[1 / d]$, so

$$
R \subseteq S \subseteq F \subseteq A
$$

Note that $A=S\left[z_{1}, \ldots, z_{m}\right]$ and that each z_{i} is integral over S. Since R has infinitely many primes, there exists a prime $q \in R$ such that $q \nmid d$. Note that $1 / q \in F$ but $1 / q \notin S$. For if

$$
\frac{1}{q}=a_{0}+\frac{a_{1}}{d}+\cdots+\frac{a_{k}}{d^{k}}
$$

with $a_{j} \in R$, then

$$
d^{k}=q\left(a_{0} d^{k}+\cdots a_{k}\right)
$$

which forces $k=0$ and $q a_{0}=1$: contradiction, as q is not a unit.
But $1 / q \in A$, so $1 / q$ is integral over S. Suppose $1 / q$ satisfies a monic polynomial of degree k over S. Clear denominators using a suitable power d^{L} to get

$$
0=\frac{d^{L}}{q^{k}}+\frac{b_{k-1}}{q^{k-1}}+\cdots+\frac{b_{1}}{q}+b_{0}
$$

alternate explanation below
where each $b_{j} \in R$. Multiply this by $d^{L(k-1)}$ to get

$$
0=1\left(\frac{d^{L}}{q}\right)^{k}+b_{k-1}\left(\frac{d^{L}}{q}\right)^{k-1}+\cdots+\left(b_{1} d^{L k-2 L}\right)\left(\frac{d^{L}}{q}\right)^{1}+b_{0} d^{L(k-1)} .
$$

Thus d^{L} / q is integral over R. However, by a standard argument, R is integrally closed in F. (This is the argument that a rational root of an integral polynomial must actually be an integer.) Thus, $d^{L} / q \in R$, which is a contradiction since $q \nmid d$.

- or more simply ... -
degree k over S. For a suitable power d^{L} and $b_{j} \in R$, we can write this polynomial as

$$
1 x^{k}+\frac{b_{k-1}}{d^{L}} x^{k-1}+\cdots+\frac{b_{1}}{d^{L}} x+\frac{b_{0}}{d^{L}}
$$

Substitute $x=1 / q$ and multiply by $q^{k} d^{L}$ to get

$$
0=d^{L}+b_{k-1} q+\cdots+b_{1} q^{k-1}+b_{0} q^{k}
$$

which implies that $q \mid d^{L}$, a contradiction.
2. Remark. We will need only the cases $R=\mathbb{Z}$ or $R=K[x]$, where K is a field. Both are Euclidean domains; and in each case we have Euclid's proof of the infinity of primes.
3.

Theorem 5.2. Let A be a finitely generated algebra of the field K, that is $A=$ $K\left[y_{1}, \ldots, y_{n}\right]$ for certain $y_{j} \in A$. Then A is a field only if it has finite dimension as a vector space over K.

Proof. Suppose $A=K\left[y_{1}, \ldots, y_{n}\right]$ is a field. Proceed by induction on n.
If $n=0$, then $A=K$ and $\operatorname{dim}(A: K)=0$. If $n=1$, then we have an epimorphism $\varphi: K[t] \rightarrow A=K\left[y_{1}\right]$, say with kernel M. Since A is a field, M is maximal; and since $K[t]$ is a PID, $M=(p(t))$, where $p(t)$ is irreducible over K. Then $A \simeq K[t] / M$ and $\operatorname{dim}(A: K)=\operatorname{deg}(p)<\infty$.
Suppose then that any field generated as a ring over a subfield by fewer than n generators is in fact finite-dimensional over that subfield.
Now consider $A=K\left[y_{1}, \ldots, y_{n}\right]$ and let $R=K\left[y_{1}\right]$, a subring of A. Let F be the field of fractions of R, so F is a subfield of A. Since $y_{1} \in R \subseteq F$, we have $A=F\left[y_{2}, \ldots, y_{n}\right]$. Indeed, A is even finitely generated as an R-algebra. By induction, $\operatorname{dim}(A: F)<\infty$, so A is algebraic over F. We are done if we can $\operatorname{show} \operatorname{dim}(F: K)<\infty$.
Now if y_{1} were transcendental over $K, R=K\left[y_{1}\right]$ would be a UFD with infinitely many primes. This violates Lemma 5.1.
Thus y_{1} is a root of some polynomial $w(t) \in K[t]$ of minimal degree; $w(t)$ must be irreducible over K and $R=K\left[y_{1}\right]$ an field extension of finite dimension over K. But then $F=R$, so $\operatorname{dim}(F: K)<\infty$.
4. Remark. Theorem 5.2 might be called the Weak Nullstellensatz.

There is a partial converse. Suppose in addition that A is an integral domain for which $\operatorname{dim}(A: K)<\infty$. For each non-zero $a \in A$ we may define a K-linear map $A \rightarrow A$ by $x \mapsto a x$. This map is injective, hence surjective, so that there exists $x \in A$ such that $a x=1$. Thus A is in fact a field.
5. Definition. A ring R is said to be finitely generated if there is some ring epimorphism

$$
\varphi: \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right] \rightarrow R
$$

In other words, there are generators $r_{1}, \ldots, r_{n} \in R$ such that each element of R is a \mathbb{Z}-linear combination of various products of these r_{j} s.
6.

Theorem 5.3. Let M be a maximal ideal in a finitely generated ring R. Then $A:=$ R / M is a finite field.

Proof. Let R be the image of \mathbb{Z} in A and let K be the field of fractions of R. Clearly, the field A is finitely generated over R. Moreover, it is also finitely generated over K. By Theorem 5.2, $\operatorname{dim}(A: K)<\infty$.

If K has characteristic 0 , then $\mathbb{Z} \simeq R$ is embedded in A and once more we contradict Lemma 5.1.
Thus $K \simeq \mathbb{Z}_{p}$ for some prime p. By Theorem 5.2 we conclude that A is a finite field.
7.

Theorem 5.4. Let R be a finitely generated integral domain. Then for each non-zero $z \in R$ there exists a maximal ideal P such that $z \notin P$. In short, the Jacobson radical $J(R)=\{0\}$.
Proof. Consider the subring $R[1 / z]$ in the fraction field F of R. Let M be a maximal ideal in $R[1 / z]$ and set $P:=M \cap R$.
Clearly P is an ideal in R. In fact, P is prime. For suppose $a b \in P$ but $a \notin P$. Then $a \notin M$ so $M+R[1 / z] \cdot a=R[1 / z]$. For some polynomial $q(t)$ over R and $m \in M$ we have $m+q(1 / z) a=1$. Multiply by b to see that $b \in P$.
On the other hand $z \notin P$. For if $z \in P$, then $z \in M$; since $1 / z \in R[1 / z]$, we get $1=z(1 / z) \in M$, a contradiction.
The inclusion $P \subseteq M$ induces a well-defined injection $\mu: R / P \rightarrow R[1 / z] / M$. By Theorem 5.3, $A:=R[1 / z] / M$ is a finite field. Note that R is finitely generated as a ring; therefore, so also is $R[1 / z]$.
Thus R / P is a finite integral domain, hence also a finite field, isomorphic to a subfield of A. Thus the ideal P is actually maximal, and we have $z \notin P$.
8.

Theorem 5.5. Weak Nullstellensatz
Suppose k be an algebraically closed field. Let M be a maximal ideal in $k\left[x_{1}, \ldots, x_{n}\right]$. Then

$$
M=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)
$$

for certain $a_{i} \in k$.
Moreover, for any proper ideal $J \subset R$, the variety

$$
V(J) \neq \emptyset .
$$

Proof. We have $\varphi: k\left[x_{1}, \ldots, x_{n}\right] \rightarrow A:=k\left[x_{1}, \ldots, x_{n}\right] / M$. A is a field since M is maximal and is clearly finitely generated over $\varphi(k)$. (The elements $\varphi\left(x_{i}\right), 1 \leqslant i \leqslant n$,
serve as generators.) Also, $k \simeq \varphi(k)$ since M is maximal and therefore contains no non-zero element of k.
Thus $\operatorname{dim}(A: \varphi(k))<\infty$ by Theorem 5.2, so A is algebraic over $\varphi(k)$. Therefore $A=\varphi(k) \simeq k$, since k is algebraically closed. Let $\varphi\left(a_{i}\right)=\varphi\left(x_{i}\right)$ for certain $a_{i} \in k$. Thus each $x_{i}-a_{i} \in M$. But the ideal $W=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$ is itself maximal, hence must equal M. (Remark: think of W as a vector subspace of $k\left[x_{1}, \ldots, x_{n}\right]$. Since $1 \notin W$, we have $k\left[x_{1}, \ldots, x_{n}\right]=k \cdot 1 \oplus W$ as linear spaces. But as a linear space M is trapped, so $M=W$.)
For the second part, any proper ideal J must be contained in some maximal ideal $M=\left(x-a_{1}, \ldots, x-a_{n}\right)$, so that the affine point $\left(a_{1}, \ldots, a_{n}\right) \in V(J)$.

Residually Finite Groups

9.

Definition 5.6. A group Γ is residually finite if for any $g \in \Gamma, g \neq 1$, there exists a homomorphism $\varphi: \Gamma \rightarrow G$, where G is finite and $\varphi(g) \neq 1$.

Remarks. Any finite group Γ is clearly residually finite. We can assume in the definition that φ is onto.
10.

Theorem 5.7. The following are equivalent for a group Γ :
(a) Γ is residually finite.
(b) For any finite subset $A \subseteq \Gamma$ there exists an epimorphism

$$
\varphi: \Gamma \rightarrow G
$$

onto a finite group G such that $\varphi_{\mid A}$ is bijective, i.e. the $\varphi(a)$ are distinct for all $a \in A$.
(c) For any finite subset $A \subseteq \Gamma$, with $1 \notin A$, there exists an epimorphism

$$
\varphi: \Gamma \rightarrow G
$$

onto a finite group G such that $\varphi(a) \neq 1$ for all $a \in A$.
Proof. We need only prove (a) $\Rightarrow(\mathrm{b})$. Suppose $A=\left\{a_{1}, \ldots, a_{r}\right\}$. For each $i<j$ we have a homomorphism $\varphi_{i, j}: \Gamma \rightarrow G_{i, j}$ onto a finite group $G_{i, j}$ such that $\varphi_{i, j}\left(a_{i} a_{j}^{-1}\right) \neq 1$. Then the direct product

$$
\varphi:=\prod_{i<j} \varphi_{i, j}: \Gamma \rightarrow \prod_{i<j} G_{i, j}
$$

does the job.
Theorem 5.8. Let Γ be any finitely generated subgroup of $G L_{n}(F)$ over the field F. Then Γ is residually finite. More specifically, suppose a_{1}, \ldots, a_{t} are distinct elements of Γ. Then there is a finite field K and a homomorphism

$$
\varphi: \Gamma \rightarrow G L_{n}(K)
$$

such that the $\varphi\left(a_{i}\right)$ are all distinct. Furthermore, if $\operatorname{char}(F)>0$, then we can take $\operatorname{char}(K)=\operatorname{char}(F)$.

Proof. Suppose Γ is generated by $\left\{g_{1}, \ldots, g_{r}\right\}$; with no loss of generality we can assume this set is closed under taking inverses. For $1 \leqslant k \leqslant r$, let $g_{k}=\left[\gamma_{i, j, k}\right]$; and let P be be the subring of F generated by 1. Thus, P is the prime subfield if $\operatorname{char}(F)>0$; otherwise, $P \simeq \mathbb{Z}$.

Now let

$$
R:=P\left[\gamma_{i, j, k}: 1 \leqslant i, j \leqslant n ; 1 \leqslant k \leqslant r\right] .
$$

Thus R is a finitely generated integral domain and we have $\Gamma \subseteq G L_{n}(R)$.
For each $i<j$ we may chose an entry in which matrices a_{i} and a_{j} differ; let $b_{i, j}$ be the difference of these entries and set $b:=\prod_{i<j} b_{i, j}$. Thus $b \neq 0$; and by Theorem 5.4 there exists a maximal ideal M with $b \notin M$. The natural map $\chi: R \rightarrow R / M=: K$ induces a group homomorphism $\varphi: \Gamma \rightarrow G L_{n}(K)$ which does the job. Note that K is a finite field by Theorem 5.3, so that $G L_{n}(K)$ is a finite group. If $\operatorname{char}(P)>0$, the additive order of $1 \in P$ cannot collapse, so that also $\operatorname{char}(K)=\operatorname{char}(F)$.
11. The next result appears as Theorem 3.4B in Dixon's book The Structure of Linear Groups [1].

Theorem 5.9. Let Γ be a finite irreducible subgroup of $G L_{n}(F)$, where F is algebraically closed. Then there is a finite extension K of the prime subfield of F such that Γ is conjugate in $G L_{n}(F)$ to a subgroup of $G L_{n}(K)$.

Proof.

Exercise. Is it possible to prove this using the machinery outlined above? The word 'conjugate' will be the sticking point.

References

[1] J. Dixon, The Structure of Linear Groups, vol. 37 of Mathematical Studies, Van Nostrand Reinhold, New York, 1971.
[2] M. Reid, Undergraduate Commutative Algebra, vol. 29 of London Mathematical Society Student Texts, Cambridge University Press, Cambridge, UK, 1995.

