Notes on Commutative Rings

1 A hierarchy of commutative rings

Euc. $R \Rightarrow P.I.D. \Rightarrow U.F.D. \Rightarrow Int. D. \Rightarrow Comm.R.$

[Comm.R.] Commutative Ring R with $1 \neq 0$.

- 1. The <u>ideal</u> generated by $\{a_1, \ldots, a_n\}$ is the set of all *R*-linear combinations $r_1a_1 + \ldots + r_na_n$. A principal ideal (a) has one such generator.
- 2. The set R^{\times} of <u>units</u> is a multiplicative group. (Units are the elements with multiplicative inverses. They cannot be <u>zerodivisors</u>. A zerodivisor is an $a \neq 0$ such that ab = 0 for some other $b \neq 0$.)
- 3. (a) A proper ideal I is
 - prime if $ab \in I \Rightarrow a \in I$ or $b \in I$;
 - maximal if $I \subseteq J \subseteq R \Rightarrow J = I$ or J = R.

[We allow I = (0).]

- (b) Maximal ideal \Rightarrow Prime ideal. In $\mathbb{Z}[x]$, I = (x) is prime but not maximal. Note $\mathbb{Z}[x]/(x) \simeq \mathbb{Z}$.
- (c) I maximal $\Leftrightarrow R/I$ field. I prime $\Leftrightarrow R/I$ integral domain.
- (d) If ideal $I \neq R$, then there exists a maximal ideal M with $I \subseteq M \subset R$.
- (e) Thus every non-unit b (which is in a proper ideal (b)) must lie in a maximal ideal.
- 4. More on Maximal Ideals, Local Rings, Radical Ideals
 - (a) <u>Note:</u> If $a \notin M$, a maximal ideal, then R = M + Ra, so that a is a unit mod M. Thus $R \setminus M$ consists of units mod M.
 - (b) Suppose M is a proper ideal in R. We say that R is a <u>local ring</u> if M is the unique maximal ideal in R.

- $R \setminus M$ consists entirely of units in $R \Leftrightarrow M$ unique maximal. (For \Leftarrow : if x is a non-unit, then (x) is a proper ideal, hence lies in some maximal ideal, hence is contained in M by uniqueness.)
- If M is maximal and 1 + M consists of units, then M is the unique maximal ideal and R is a local ring. (For if $u \in R \setminus M$, then 1 = xu + m for some $m \in M$, $x \in R$, so xu = 1 + (-m) is a unit, so u is a unit; see previous item.)
- (c) The nilradical Nil of R consists of all nilpotent elements of R ($x^n = 0$ for some positive integer n). It's easy to prove this is an ideal; and R/Nil has no non-zero nilpotent elements. Further, Nil is the intersection of all prime ideals in R. (Note: \supset involves the construction of a suitable prime ideal; see Reid for a Zorn's Lemma argument involving multiplicative sets.)
- (d) The Jacobson radical Jac of R is the intersection of all maximal ideals. Furthermore, $x \in \text{Jac}$ if-f 1 - xy is a unit in R for all $y \in R$.
- The radical of an ideal I is (e)

$$\sqrt{I} := \{ x \in R : x^k \in I, \text{ for some } k \ge 1 \}.$$

Thus \sqrt{I} is an ideal; $I \subseteq \sqrt{I}$; and \sqrt{I} is the intersection of all the prime ideals containing I. Thus $\sqrt{R} = R$ and $\sqrt{(0)} = \text{Nil.}$

5. (a) The sum of ideals I, J is the ideal

$$I + J := \{a + b \mid a \in I, b \in J\}.$$

Eg. If M maximal, and $ab \in M$, then each of M + Ra, M + Rb equals M or R. If both equal R, then $1 = m_1 + r_1 a = m_2 + r_2 b$; multiply to get $1 \in M$, a contradiction. Thus maximal \Rightarrow prime.

- (b) Ideals I, J are relatively prime if I + J = R.
- 6. Polynomials. The polynomial ring R[x] is determined by the following universal property: there is a ring embedding $\mu : R \to R[x]$ and an element $x \in R[x]$ such that for any homomorphism $\varphi: R \to S$ and specific element $c \in S$ there exists a unique homomorphism $\varphi_c : R[x] \to S$ with $\varphi = \mu \varphi_c$ (compose left to right) and $x \varphi_c = c$.

If I is a proper ideal in R, we thus have

$$R[x]/I[x] \simeq (R/I)[x] . \tag{1}$$

That is, factor by the ideal (in R[x]) of all polynomials with coefficients in I.

7. <u>Eisenstein:</u>

If M is maximal in R and

$$f(x) = a_n x^n + \ldots + a_0 \qquad (n \ge 1)$$

with $a_n \notin M$, $a_i \in M$ for all i < n, and $a_0 \notin M^2$, then f is irreducible over R. (That is, f = gh forces g or h to be a constant polynomial.)

So suppose $g = \sum_{0}^{r} b_i x^i$, $h = \sum_{0}^{s} c_i x^i$, where $r + s = n = \deg f$, with r, s > 0. Since $a_0 \in M$ but $a_0 \notin M^2$, we can w.l.o.g. assume $b_0 \in M$ and $c_0 \notin M$. (Note that $a_0 \equiv b_0 c_0 \equiv 0$ in the field R/M.) But $a_n = b_r c_s \notin M$, so let j be minimal with $b_j \notin M$. Thus $j \ge 1$. Consider

$$a_j = b_0 c_j + \ldots + b_{j-1} c_1 + b_j c_0 \pmod{M}$$

This gives a contradiction.

8. The product IJ of ideals I, J consists of all finite sums of products ab, where $a \in I, B \in J$.

We similarly define the product of ideals I_1, \ldots, I_m . Always we have for ideals J, I_k :

- (a) $I_1 \dots I_m = (I_1 \dots I_{m-1})I_m$.
- (b) $I_1 \ldots I_m \subseteq I_1 \cap \ldots \cap I_m$.
- (c) $(I_1 + J)(I_2 + J) \dots (I_m + J) \subseteq (I_1 \dots I_m) + J.$

9. <u>Theorem.</u> Let I_1, \ldots, I_m be pairwise relatively prime ideals, and for $1 \leq k \leq m$ let

$$\widehat{I}_k := \bigcap_{i \neq k} I_i = I_1 \cap \ldots \cap I_{k-1} \cap I_{k+1} \cap \ldots \cap I_m .$$

Then

- (a) $I_1 \ldots I_m = I_1 \cap \ldots \cap I_m$.
- (b) For $1 \leq k \leq m$, I_k and \widehat{I}_k are relatively prime.

<u>Proof.</u> (Induction on m.)

- (i) $\underline{m=2}$. Part (b) follows by definition. Since $R = I_1 + I_2$, there exist $a \in I_1$, $b \in I_2$ with 1 = a + b. Thus $x \in I_1 \cap I_2 \Rightarrow x = ax + xb \in I_1I_2$. This proves (a).
- (ii) For $m \ge 2$, we may assume by induction that for $1 \le k \le m$,

$$\widehat{I}_k = I_1 \dots I_{k-1} I_{k+1} \dots I_m \quad .$$

Thus

$$R = (I_k + I_1) \dots (I_k + I_{k-1}) (I_k + I_{k+1}) \dots (I_k + I_m) \subseteq I_k + \widehat{I}_k \subseteq R.$$

This proves part (b). Next note that

$$I_1 \dots I_m = (I_1 \dots I_{m-1})I_m$$

= $\widehat{I}_m I_m$ (induction, (a))
= $\widehat{I}_m \cap I_m$ (induction, $m = 2$)
= $(I_1 \cap \dots \cap I_{m-1}) \cap I_m$ (induction).

This end the proof.

Note that if I_k , \widehat{I}_k are relatively prime, then I_k , I_i are relatively prime for all $i \neq k$, since $I_i \supseteq \widehat{I}_k$, so that $I_i + I_k = R$.

10. Chinese Remainder Theorem. Suppose that I_1, \ldots, I_m are pairwise relatively prime ideals. Then the natural mapping

$$R/\bigcap_{k=1}^{m} I_k \to R/I_1 \times \ldots \times R/I_m$$

is an isomorphism.

<u>Proof.</u> It's easy to check this mapping is well-defined and 1 - 1. By the previous theorem, for $1 \leq k \leq m$ there exist $a_k \in I_k$, $b_k \in \widehat{I}_k$ with $1 = a_k + b_k$. For any $r_1, \ldots, r_m \in R$, let $r = r_1b_1 + \ldots + r_mb_m$. Then $r \equiv r_k \pmod{I_k}$ for $1 \leq k \leq m$, so the above mapping is onto.

[Int. D] Integral Domain – no zerodivisors, so that cancellation holds.

- 1. A non-unit, non-zero element p is
 - irreducible if $p = ab \Rightarrow a$ or b is a unit;
 - prime if $p|(ab) \Rightarrow p|a$ or p|b.

Thus p prime \Rightarrow p irreducible, but not conversely in general, because of (c) below.

- 2. Results on Principal Ideals.
 - (a) (a) = (b) if and only if a, b are associates. Thus the generator of a principal ideal is unique to unit factors.
 - (b) A non-zero principal ideal (p) is a prime ideal if and only if the generator p is prime.
 - (c) A non-zero principal ideal (m) is maximal (among principal ideals in R) if and only if the generator m is irreducible.

Note that if (m) is maximal, then it is maximal among principal ideals. However, the converse may fail if there are non-principal ideals J with

$$(m) \subset J \subset R.$$

Of course, this converse will hold in a P.I.D. (see below).

3. If R is an integral domain, so is R[x] (easy: look at leading coefficients).

- 4. Any integral domain R embeds in a unique field of fractions K = Frac R. Any isomorphism $\varphi : R \to S$ (of integral domains) extends uniquely to the respective fields of fractions. In a sense, the field of fractions is "minimal" with this property.
- 5. Gauss' Lemma for an Integral Domain R. Any prime $p \in R$ remains prime in R[x].

Proof. Let $p \in R$ be prime, so that I = (p) is a prime ideal and R/I is an integral domain. Suppose p|fg for $f, g \in R[x]$, say fg = ph. Passing to R[x]/I[x], we get fg = 0 in the integral domain (R/I)[x] (see (1). Thus f or G is in I[x], so p divides one or the other.

[U.F.D.] Unique Factorization Domain.

- 1. By definition each $x \neq 0$ has an essentially unique factorization into irreducibles.
 - (a) If p irreducible and p|ab, then p must appear in the factorization of either a or b. Thus

irreducible \Rightarrow prime.

(b) Alternatively, one may define a U.F.D. as an integral domain in which factorizations into irreducibles exist and in which irreducibles are prime.In any case, in U.F.D.'s we have

irreducible \Leftrightarrow prime.

- 2. Any two elements in a U.F.D have a gcd and lcm, unique to units.
- 3. For any $f \in R[x]$, the <u>content</u>

 $\delta = \delta(f) := \gcd(\{ \text{ all coefficients of } f\})$

The content is thus determined to associates, and $f = \delta f_1$ for some *primitive* polynomial $f_1 \in R[x]$. A primitive polynomial is one whose content is a unit. Consequently, it cannot be 0.

4. Gauss' Lemma for a UFD R. The product of two primitive polynomials f and g is also primitive.

Standard Proof. Let $f = \sum a_i x^i$, $g = \sum b_i x^i$. Say $fg = \delta h$, for $\delta \in R$ and $h = \sum c_i x^i \in R[x]$. Suppose some prime $p|\delta$. Since f, g primitive, there exist 'first' coeffs. a_r, b_s not divisible by p. But then $\delta c^{r+s} = a_r b_s + \text{ terms div. by } p$: contradiction. So δ is a unit and fg is primitive.

Another Proof. If fg not primitive, there exists a prime p|(fg). By Gauss' Lemma for integral domains this means p|f or p|g, contradicting primitivity of one or the other poly.

5. Corollaries.

- (a) The content of a product of polynomials is the product of the contents.
- (b) Suppose U.F.D. R has field of fractions K. Suppose $h \in R[x]$ factors over K[x] as h = fg. Then there is a $u \in K$ with uf, $u^{-1}g \in R[x]$. In short, h actually factors in the base ring R[x].

Proof. For any poly. in K[x] we can find a common denom. for the coeffs. and extract a gcd for the new numerators. So there exist $a, b, c, d \in R$ and primitive $f_1, g_1 \in R[x]$ with

$$f = \frac{a}{b}f_1 , \ g = \frac{c}{d}g_1 .$$

Thus

$$h = \frac{\alpha}{\beta} f_1 g_1 \; ,$$

where $(ac)/(bd) = \alpha/\beta$, with α , β coprime in R. Thus $\beta h = \alpha f_1 g_1$. If some prime $p|\beta$ we get $p|(f_1g_1)$, again contradicting Gauss' Lemma for integral domains, or the fact that f_1g_1 is primitive. Hence β is a unit in R and so h factors in R[x] as $h = (\alpha f_1)(\beta^{-1}g_1)$. (Thus $u = b\alpha/a$.)

- (c) If a polynomial with coefficients in \mathbb{Z} is irreducible in $\mathbb{Z}[x]$, then it is irreducible in $\mathbb{Q}[x]$.
- (d) If R is a U.F.D., then so is R[x] (and so also $R[x_1, \ldots, x_n]$). **Proof.** Let K be the field of fractions for R.

(i) if $f \in R[x]$ is irred., then either $\deg(f) = 0$, whence f is irreducible in R, or $\deg(f) > 0$, whence f is irreducible in K[x] and is furthermore primitive in R[x] (else the content $\delta(f)$ is a non-trivial factor).

(ii) now any poly. $g \in K[x]$ feators into irreducibles in K[x], since the latter is a Euclidean domain (hence P.I.D., hence U.F.D.: see below). Using (i) we can now

rescale scalars throughout any factorization, and exploit the essential uniqueness in K[x], to get unique factorization into irreducibles in R[x].

(e) Example in $\mathbb{Z}[x]$: $6x^3 - 24x^2 - 24x - 30 = 2 \cdot 3 \cdot (x^2 + x + 1) \cdot (x - 5)$.

[P.I.D.] Principal Ideal Domain.

- 1. From above, a proper non-zero ideal here is prime if and only if it is maximal.
- 2. Here is a proof, appropriate to this context, that p irreducible implies p prime. Proof. Say p|ab and let (q) := (a) + (p). Thus p = xq. If x is a unit, then (p) = (q), so $a \in (p)$ and thus p|a. If q is a unit, then 1 = ya + zp, so b = y(ab) + (zb)p, so p|b.
- 3. A P.I.D. satisfies the A.C.C. on ideals. Indeed,

$$(a_1) \subseteq (a_2) \subseteq \ldots \subseteq (a_i) \subseteq \ldots$$

implies there exists n with $(a_i) = (a_n)$ for all $i \ge n$. (The union is an ideal (b) and $b \in (a_n)$ for some n.)

4. The **[A.C.C.]** prevents an infinite sequence a_1, a_2, \ldots where each a_i is a multiple of a_{i+1} . In turn, this implies factorization onto irreducibles. Now if there are two such factorizations for

$$x = p_1 \dots p_r = q_1 \dots q_s,$$

we may suppose (p_1) is the minimal ideal among all $(p_j), (q_j)$. Now work in the field $R/(p_1)$ to show that $(p_1) = (q_j)$ for some j. Essential uniqueness soon follows. This explains why

$$P.I.D. \Rightarrow U.F.D.$$

[Euc. R.] Euclidean Rings.

1. These are P.I.D.'s. Examples include \mathbb{Z} and k[x], for any field k.

2 Fourth Isomorphism Theorem

. Suppose $\varphi: R \to S$ be a ring epimorphism (mapping 1_R to 1_S when rings have units.) Let $K = \ker \varphi$. On

 $\mathcal{L}_R := \{ \text{ideals } J : K \subseteq J \subseteq R \} ,$

we define $\widetilde{J} := \varphi(J)$; and on

$$\mathcal{L}_S := \{ \text{ideals } L : L \subseteq S \} .$$

we let $L^* := \varphi^{-1}(L)$. Then

- 1. $S \simeq R/K$.
- 2. $J \mapsto \widetilde{J}$ and $L \mapsto L^*$ are well-defined mappings respecting inclusion of ideals; and $J = (\widetilde{J})^*$ and $L = \widetilde{(L^*)}$.
- 3. \mathcal{L}_R and \mathcal{L}_S are isomorphic as partially ordered sets.
- 4. J is maximal in R if and only \widetilde{J} is maximal in S.
- 5. J is prime in R if and only \widetilde{J} is prime in S.
- 6. $R/J \simeq S/\tilde{J}$.
- 7. $(\widetilde{J_1 \cap J_2}) = \widetilde{J_1} \cap \widetilde{J_2}.$

8.
$$(J_1 + J_2) = \widetilde{J}_1 + \widetilde{J}_2.$$

Proof. This is all routine. The condition that $K \subseteq J$ eliminates problems.

3 Modules and Integrality

1. Let A be a commutative ring with identity $1 = 1_A$. Recall that

also an A-module, and in fact an A-algebra.

- an A -module M is *finitely generated*, or just *finite*, if it has a finite spanning set.
- the A-module endomorphisms $\lambda : M \to M$ form a ring EndM with composition as multiplication and with identity $i = 1_{\text{End}M} : M \to M$. It is easy to see that scalar multiplication $a\lambda$, with $a \in A, \lambda \in \text{End}M$, interacts as expected with addition and multiplication of endomorphisms. Thus EndM is
- *M* is said to be *faithful* as an *A*-module if $am = 0, \forall m \in M$, implies a = 0. In this case, *A* embeds isomorphically in End*M* via the scalar mappings $\mu_a : M \to M$, where $\mu_a(m) = am$.
- 2. Fix $\varphi \in \text{End}M$ and let

$$A[\varphi] := \{a_n \varphi^n + a_{n-1} \varphi^{n-1} + \dots + a_1 \varphi + a_0 \imath : a_j \in A, \ n \ge 0\}$$

be the set of all polynomials in φ . Thus $A[\varphi]$ is the subring of EndM generated by φ and all a_i , in other words, the subalgebra generated by φ .

Note that M now becomes an $A[\varphi]$ -module, taking $\varphi \cdot m := \varphi(m)$.

3.

Theorem 3.1. The Determinant Trick

Suppose the finite A-module M is spanned by m_1, \ldots, m_n . Let $\varphi : M \to M$ be an A-module endomorphism such that $\varphi(M) \subseteq IM$ for some ideal I of A. (Of course, this always holds for I = (1) = A.) Then φ satisfies some monic relation

$$\varphi^n + c_1 \varphi^{n-1} + \dots + c_{n-1} \varphi + c_n \imath = 0 \tag{2}$$

in $A[\varphi]$, with $c_j \in I^j$ (the product ideal) for $j = 1, \ldots, n$,

Proof. For certain $a_{kj} \in I$ we have

$$\varphi(m_j) = \sum_{j=1}^n a_{kj} m_j$$

In $A[\varphi]$ this gives

$$\sum_{j=1}^{n} (\delta_{kj}\varphi - a_{kj}\imath)(m_j) = 0 , \qquad (3)$$

where $\delta_{kj} \in A$. Let the matrix $\Delta = [\delta_{kj}\varphi - a_{kj}i]$ over the ring $A[\varphi]$ have adjoint $adj\Delta = [b_{kj}]$. Thus for all l, j we have

$$\sum_{k=1}^{n} b_{lk} (\delta_{kj} \varphi - a_{kj} \imath) = \delta_{lj} \det(\Delta).$$

Apply this last result to each m_j and sum using (3) to conclude that all $\det(\Delta)(m_j) = 0$. Thus $\det(\Delta) = 0$ in $A[\varphi]$. Expand this determinant to get (2).

4. Examples

(a) Suppose I = A and M is a free module with basis m_1, \ldots, m_n . Then the matrix for $\varphi \in \text{End}M$ is $[a_{kj}]$, with *characteristic polynomial*

$$\chi(t) = \det[\delta_{kj}t - a_{kj}] \,.$$

Replacing t by φ (and 1_A by i) we get

$$\det[\delta_{kj}\varphi - a_{kj}\imath] = 0$$

in EndM. This is the Cayley-Hamilton Theorem.

(b) If A is a subring of B, then the determinant trick is the key to proving that the elements of B which are *integral* over A form a subring of B, i.e. the *integral* closure of A in B.

4 Finitely Generated Modules and Nakayama's Lemma

1. Nakayama's Lemma. Let V be a finitely generated R-module and I an ideal contained in the Jacobson radical of R (i.e. in the intersection of all maximal ideals). Then IV = V implies V = 0.

(For $V \neq 0$ let u_1, \ldots, u_n be a minimal set of generators; thus $u_n = a_1u_1 + \ldots + a_nu_n$, for some $a_j \in I$; since a_n for instance is in the Jacobson radical, $1 - a_n$ is a unit, which means that u_n is redundant: contradn.)

- 2. Let R be a local ring with maximal ideal I. Suppose W is an R-submodule of the R-module V, where V/W is finitely generated and such that V = W + IV. Then V = W.
- 3. If V is finite over R, then V/(IV) is a finite dimensional vector space over the residue field k = R/I. And a spanning subset of this vector space lifts to a spanning subset of V considered as an R-module.

5 Finitely generated Algebras

Our sources are notes from Colin Ingalls, who in turn referred to www.mathreference.com. See also Miles Reid's book *Undergraduate Commutative Algebra* [2]. The key Theorem 5.2 below appears in that book in Section 4.2. Perhaps it makes sense to take that as the starting point for a talk.

1.

Lemma 5.1. Let R be a UFD which has infinitely many primes and is (embedded as) a subring of a field A. Suppose A is finitely generated as an R-algebra. Then A cannot be an algebraic extension of the fraction field F for R.

Proof. Since A is a field, we have $R \subseteq F \subseteq A$. We must understand the field extension $F \subseteq A$. So suppose A is algebraic over F and let $A = R[z_1, \ldots, z_m]$ as a finitely generated algebra over R.

Each z_i satisfies a monic polynomial $p_i(t)$ over F. Since R is a UFD, we have a least common multiple d for all *denominators* of coefficients in the various p_i . Thus each

$$p_i \in \frac{1}{d}R[t]$$

Now let S := R[1/d], so

$$R \subseteq S \subseteq F \subseteq A \; .$$

Note that $A = S[z_1, \ldots, z_m]$ and that each z_i is integral over S. Since R has infinitely many primes, there exists a prime $q \in R$ such that $q \nmid d$. Note that $1/q \in F$ but $1/q \notin S$. For if

$$\frac{1}{q} = a_0 + \frac{a_1}{d} + \dots + \frac{a_k}{d^k} ,$$

with $a_j \in R$, then

$$d^k = q(a_0 d^k + \cdots + a_k) ,$$

which forces k = 0 and $qa_0 = 1$: contradiction, as q is not a unit.

But $1/q \in A$, so 1/q is integral over S. Suppose 1/q satisfies a monic polynomial of degree k over S. Clear denominators using a suitable power d^L to get alternate

where each $b_j \in R$. Multiply this by $d^{L(k-1)}$ to get

$$0 = 1\left(\frac{d^{L}}{q}\right)^{k} + b_{k-1}\left(\frac{d^{L}}{q}\right)^{k-1} + \dots + \left(b_{1}d^{Lk-2L}\right)\left(\frac{d^{L}}{q}\right)^{1} + b_{0}d^{L(k-1)}$$

Thus d^L/q is integral over R. However, by a standard argument, R is integrally closed in F. (This is the argument that a rational root of an integral polynomial must actually be an integer.) Thus, $d^L/q \in R$, which is a contradiction since $q \nmid d$.

– or more simply ... –

degree k over S. For a suitable power d^L and $b_i \in R$, we can write this polynomial as

$$1x^k + \frac{b_{k-1}}{d^L}x^{k-1} + \dots + \frac{b_1}{d^L}x + \frac{b_0}{d^L}$$
.

Substitute x = 1/q and multiply by $q^k d^L$ to get

$$0 = d^{L} + b_{k-1}q + \dots + b_{1}q^{k-1} + b_{0}q^{k} ,$$

which implies that $q \mid d^L$, a contradiction.

2. **Remark**. We will need only the cases $R = \mathbb{Z}$ or R = K[x], where K is a field. Both are Euclidean domains; and in each case we have Euclid's proof of the infinity of primes.

3.

Theorem 5.2. Let A be a finitely generated algebra of the field K, that is $A = K[y_1, \ldots, y_n]$ for certain $y_j \in A$. Then A is a field only if it has finite dimension as a vector space over K.

Proof. Suppose $A = K[y_1, \ldots, y_n]$ is a field. Proceed by induction on n.

If n = 0, then A = K and dim(A : K) = 0. If n = 1, then we have an epimorphism $\varphi : K[t] \to A = K[y_1]$, say with kernel M. Since A is a field, M is maximal; and since K[t] is a PID, M = (p(t)), where p(t) is irreducible over K. Then $A \simeq K[t]/M$ and dim $(A : K) = \text{deg}(p) < \infty$.

Suppose then that any field generated as a ring over a subfield by fewer than n generators is in fact finite-dimensional over that subfield.

Now consider $A = K[y_1, \ldots, y_n]$ and let $R = K[y_1]$, a subring of A. Let F be the field of fractions of R, so F is a subfield of A. Since $y_1 \in R \subseteq F$, we have $A = F[y_2, \ldots, y_n]$. Indeed, A is even finitely generated as an R-algebra. By induction, dim $(A : F) < \infty$, so A is algebraic over F. We are done if we can show dim $(F : K) < \infty$.

Now if y_1 were transcendental over K, $R = K[y_1]$ would be a UFD with infinitely many primes. This violates Lemma 5.1.

Thus y_1 is a root of some polynomial $w(t) \in K[t]$ of minimal degree; w(t) must be irreducible over K and $R = K[y_1]$ an field extension of finite dimension over K. But then F = R, so dim $(F : K) < \infty$.

4. Remark. Theorem 5.2 might be called the *Weak Nullstellensatz*.

There is a partial converse. Suppose in addition that A is an integral domain for which $\dim(A:K) < \infty$. For each non-zero $a \in A$ we may define a K-linear map $A \to A$ by $x \mapsto ax$. This map is injective, hence surjective, so that there exists $x \in A$ such that ax = 1. Thus A is in fact a field.

5. **Definition**. A ring R is said to be *finitely generated* if there is some ring epimorphism

$$\varphi: \mathbb{Z}[x_1,\ldots,x_n] \to R$$
.

In other words, there are generators $r_1, \ldots, r_n \in R$ such that each element of R is a \mathbb{Z} -linear combination of various products of these r_i s.

6.

Theorem 5.3. Let M be a maximal ideal in a finitely generated ring R. Then A := R/M is a finite field.

Proof. Let R be the image of \mathbb{Z} in A and let K be the field of fractions of R. Clearly, the field A is finitely generated over R. Moreover, it is also finitely generated over K. By Theorem 5.2, dim $(A:K) < \infty$.

If K has characteristic 0, then $\mathbb{Z} \simeq R$ is embedded in A and once more we contradict Lemma 5.1.

Thus $K \simeq \mathbb{Z}_p$ for some prime p. By Theorem 5.2 we conclude that A is a finite field.

7.

Theorem 5.4. Let R be a finitely generated integral domain. Then for each non-zero $z \in R$ there exists a maximal ideal P such that $z \notin P$. In short, the Jacobson radical $J(R) = \{0\}$.

Proof. Consider the subring R[1/z] in the fraction field F of R. Let M be a maximal ideal in R[1/z] and set $P := M \cap R$.

Clearly P is an ideal in R. In fact, P is prime. For suppose $ab \in P$ but $a \notin P$. Then $a \notin M$ so $M + R[1/z] \cdot a = R[1/z]$. For some polynomial q(t) over R and $m \in M$ we have m + q(1/z)a = 1. Multiply by b to see that $b \in P$.

On the other hand $z \notin P$. For if $z \in P$, then $z \in M$; since $1/z \in R[1/z]$, we get $1 = z(1/z) \in M$, a contradiction.

The inclusion $P \subseteq M$ induces a well-defined injection $\mu : R/P \to R[1/z]/M$. By Theorem 5.3, A := R[1/z]/M is a finite field. Note that R is finitely generated as a ring; therefore, so also is R[1/z].

Thus R/P is a finite integral domain, hence also a finite field, isomorphic to a subfield of A. Thus the ideal P is actually maximal, and we have $z \notin P$.

8.

Theorem 5.5. Weak Nullstellensatz

Suppose k be an algebraically closed field. Let M be a maximal ideal in $k[x_1, \ldots, x_n]$. Then

$$M = (x_1 - a_1, \dots, x_n - a_n)$$

for certain $a_i \in k$.

Moreover, for any proper ideal $J \subset R$, the variety

 $V(J) \neq \emptyset$.

Proof. We have $\varphi : k[x_1, \ldots, x_n] \to A := k[x_1, \ldots, x_n]/M$. A is a field since M is maximal and is clearly finitely generated over $\varphi(k)$. (The elements $\varphi(x_i), 1 \leq i \leq n$,

serve as generators.) Also, $k \simeq \varphi(k)$ since M is maximal and therefore contains no non-zero element of k.

Thus dim $(A : \varphi(k)) < \infty$ by Theorem 5.2, so A is algebraic over $\varphi(k)$. Therefore $A = \varphi(k) \simeq k$, since k is algebraically closed. Let $\varphi(a_i) = \varphi(x_i)$ for certain $a_i \in k$. Thus each $x_i - a_i \in M$. But the ideal $W = (x_1 - a_1, \dots, x_n - a_n)$ is itself maximal, hence must equal M. (Remark: think of W as a vector subspace of $k[x_1, \dots, x_n]$. Since $1 \notin W$, we have $k[x_1, \dots, x_n] = k \cdot 1 \oplus W$ as linear spaces. But as a linear space M is trapped, so M = W.)

For the second part, any proper ideal J must be contained in some maximal ideal $M = (x - a_1, \ldots, x - a_n)$, so that the affine point $(a_1, \ldots, a_n) \in V(J)$.

Residually Finite Groups

9.

Definition 5.6. A group Γ is residually finite if for any $g \in \Gamma$, $g \neq 1$, there exists a homomorphism $\varphi : \Gamma \to G$, where G is finite and $\varphi(g) \neq 1$.

Remarks. Any finite group Γ is clearly residually finite. We can assume in the definition that φ is onto.

10.

Theorem 5.7. The following are equivalent for a group Γ :

- (a) Γ is residually finite.
- (b) For any finite subset $A \subseteq \Gamma$ there exists an epimorphism

 $\varphi:\Gamma\to G$

onto a finite group G such that $\varphi_{|A}$ is bijective, i.e. the $\varphi(a)$ are distinct for all $a \in A$.

(c) For any finite subset $A \subseteq \Gamma$, with $1 \notin A$, there exists an epimorphism

 $\varphi:\Gamma\to G$

onto a finite group G such that $\varphi(a) \neq 1$ for all $a \in A$.

Proof. We need only prove (a) \Rightarrow (b). Suppose $A = \{a_1, \ldots, a_r\}$. For each i < j we have a homomorphism $\varphi_{i,j} : \Gamma \to G_{i,j}$ onto a finite group $G_{i,j}$ such that $\varphi_{i,j}(a_i a_j^{-1}) \neq 1$. Then the direct product

$$\varphi := \prod_{i < j} \varphi_{i,j} : \Gamma \to \prod_{i < j} G_{i,j}$$

does the job.

Theorem 5.8. Let Γ be any finitely generated subgroup of $GL_n(F)$ over the field F. Then Γ is residually finite. More specifically, suppose a_1, \ldots, a_t are distinct elements of Γ . Then there is a finite field K and a homomorphism

$$\varphi: \Gamma \to GL_n(K)$$

such that the $\varphi(a_i)$ are all distinct. Furthermore, if $\operatorname{char}(F) > 0$, then we can take $\operatorname{char}(K) = \operatorname{char}(F)$.

Proof. Suppose Γ is generated by $\{g_1, \ldots, g_r\}$; with no loss of generality we can assume this set is closed under taking inverses. For $1 \leq k \leq r$, let $g_k = [\gamma_{i,j,k}]$; and let P be be the subring of F generated by 1. Thus, P is the prime subfield if char(F) > 0; otherwise, $P \simeq \mathbb{Z}$.

Now let

$$R := P[\gamma_{i,j,k} : 1 \leq i, j \leq n; 1 \leq k \leq r].$$

Thus R is a finitely generated integral domain and we have $\Gamma \subseteq GL_n(R)$.

For each i < j we may chose an entry in which matrices a_i and a_j differ; let $b_{i,j}$ be the difference of these entries and set $b := \prod_{i < j} b_{i,j}$. Thus $b \neq 0$; and by Theorem 5.4 there exists a maximal ideal M with $b \notin M$. The natural map $\chi : R \to R/M =: K$ induces a group homomorphism $\varphi : \Gamma \to GL_n(K)$ which does the job. Note that K is a finite field by Theorem 5.3, so that $GL_n(K)$ is a finite group. If $\operatorname{char}(P) > 0$, the additive order of $1 \in P$ cannot collapse, so that also $\operatorname{char}(K) = \operatorname{char}(F)$.

11. The next result appears as Theorem 3.4B in Dixon's book *The Structure of Linear Groups* [1].

Theorem 5.9. Let Γ be a finite irreducible subgroup of $GL_n(F)$, where F is algebraically closed. Then there is a finite extension K of the prime subfield of F such that Γ is conjugate in $GL_n(F)$ to a subgroup of $GL_n(K)$.

Proof.

Exercise. Is it possible to prove this using the machinery outlined above? The word 'conjugate' will be the sticking point. \Box

References

- J. DIXON, The Structure of Linear Groups, vol. 37 of Mathematical Studies, Van Nostrand Reinhold, New York, 1971.
- [2] M. REID, Undergraduate Commutative Algebra, vol. 29 of London Mathematical Society Student Texts, Cambridge University Press, Cambridge, UK, 1995.