Notes on Commutative Rings

1 A hierarchy of commutative rings
Euc. R = P.I.D. = U.F.D. = Int. D. = Comm.R.
[Comm.R.] Commutative Ring R with 1 # 0.

1. The ideal generated by {ay,...,a,} is the set of all R-linear combinations ria; + ...+
Tnay. A principal ideal (a) has one such generator.

2. The set R* of units is a multiplicative group. (Units are the elements with multiplica-
tive inverses. They cannot be zerodivisors. A zerodivisor is an a # 0 such that ab =0
for some other b # 0.)

3. (a) A proper ideal [ is

e primeifabe I =aclorbel,
e maximalif /I C JC R=J=1orJ=R.
[We allow I = (0).]
(b) Maximal ideal = Prime ideal.
In Z[z], I = (x) is prime but not maximal. Note Z[z]/(z) ~ Z.

(c¢) I maximal < R/I field.
I prime < R/I integral domain.

(d) Ifideal I # R, then there exists a maximal ideal M with I C M C R.

(e) Thus every non-unit b (which is in a proper ideal (b)) must lie in a maximal ideal.

4. More on Maximal Ideals, Local Rings, Radical Ideals

(a) Note: If a ¢ M, a maximal ideal, then R = M + Ra, so that a is a unit mod M.
Thus R\ M consists of units mod M.

(b) Suppose M is a proper ideal in R. We say that R is a local ring if M is the unique
maximal ideal in R.



(b)

e R\ M consists entirely of units in R < M unique maximal. (For <: if x is a
non-unit, then () is a proper ideal, hence lies in some maximal ideal, hence
is contained in M by uniqueness.)

e If M is maximal and 1+ M consists of units, then M is the unique maximal
ideal and R is a local ring. (For if v € R\ M, then 1 = zu + m for some
m € M, x € R, soxu = 14 (—m) is a unit, so u is a unit; see previous item.)

The nilradical Nil of R consists of all nilpotent elements of R (2" = 0 for some
positive integer n). It’s easy to prove this is an ideal; and R/Nil has no non-zero
nilpotent elements. Further, Nil is the intersection of all prime ideals in R. (Note:
D involves the construction of a suitable prime ideal; see Reid for a Zorn’s Lemma
argument involving multiplicative sets.)

The Jacobson radical Jac of R is the intersection of all maximal ideals. Further-
more, x € Jac iff 1 — xy is a unit in R for all y € R.

The radical of an ideal [ is

VI:={zreR:z*el, forsome k>1}.

Thus /1 is an ideal; I C v/I; and /T is the intersection of all the prime ideals
containing [.

Thus vR = R and +/(0) = Nil.

The sum of ideals I, J is the ideal

I+J:={a+blacl, be J}.

Eg. If M maximal, and ab € M, then each of M + Ra, M + Rb equals M or
R. If both equal R, then 1 = m; 4+ r1a = my + r9b; multiply to get 1 € M, a
contradiction. Thus maximal = prime.

Ideals I, J are relatively prime if [ + J = R.

. Polynomials. The polynomial ring R[z] is determined by the following universal prop-
erty: there is a ring embedding ¢ : R — R[z] and an element z € R[x] such that
for any homomorphism ¢ : R — S and specific element ¢ € S there exists a unique
homomorphism ¢, : R[z] — S with ¢ = ugp,. (compose left to right) and z¢. = c.

R—~ Rz]

X goc



If I is a proper ideal in R, we thus have

Rla]/I[z] = (R/1)[x] (1)
That is, factor by the ideal (in R[x]) of all polynomials with coefficients in 1.

. Eisenstein:

If M is maximal in R and

f(x) = anx" + ...+ ag (n>1)
with a, € M, a; € M for all i < n, and ay &€ M?, then f is irreducible over R. (That
is, f = gh forces g or h to be a constant polynomial.)

So suppose g = Y o bix’, h = > o', where r +s = n = deg f, with r,s > 0. Since
ag € M but ag ¢ M?, we can w.lo.g. assume by € M and ¢y ¢ M. (Note that
ap = bocy = 0 in the field R/M.) But a,, = b,c; € M, so let j be minimal with b; & M.
Thus j > 1. Consider

aj =boc; + ...+ bj_1c1 + bjcy (mod M) .
This gives a contradiction.

. The product IJ of ideals I,J consists of all finite sums of products ab, where a €
I, Bel.

We similarly define the product of ideals I, ..., I,,. Always we have for ideals J, I:
(a) ]1 ce Im = ([1 . [m—l)[m~

(b) L...I,CLN...N1I,.
(©) (L+ Lo+ J).. (I +J)C (... I) + J.



9. Theorem. Let I, ..., I, be pairwise relatively prime ideals, and for 1 < k < m let

Lio=(\L=LN...0LaNhpan...01,.
itk

(b) For 1 < k< m, Iy and I, are relatively prime.

Proof. (Induction on m.)

(i) m = 2. Part (b) follows by definition. Since R = I} + I, there exist a € I}, b € I,
with 1 =a+0b. Thus x € 1 N [y = x = ax + xb € I1I5. This proves (a).

(ii) For m > 2, we may assume by induction that for 1 < k < m,

Li=1.. Ll . L .
Thus

R= i+ 1) ... (I + Io)) e + Lysr) ... (I + Iy) € I + I, € R.

This proves part (b). Next note that

[ljm = (IlIm—l)Im

Il (induction, (a))
= I,NI, (induction, m = 2)
(Lhn...N1y—1)N1, (induction).

This end the proof.

Note that if I}, E are relatively prime, then [, I; are relatively prime for all
1 # k, since I; D Iy, so that I; + I, = R.



10.

[Int.

1.

2.

3.

Chinese Remainder Theorem. Suppose that I;,..., [, are pairwise relatively
prime ideals. Then the natural mapping

R/(In — R/Iy x ... x R/,

k=1
is an isomorphism.

Proof. It’s easy to check this mapping is well-defined and 1 — 1. By the previous
theorem, for 1 < k < m there exist a, € [, by € I with 1 = a; + b. For any
T1ye oy Tm € Ry let r =11by + ...+ ryby,. Then r =7y, (mod I) for 1 < k < m, so the
above mapping is onto.

D] Integral Domain — no zerodivisors, so that cancellation holds.

A non-unit, non-zero element p is

e irreducible — if p = ab = a or b is a unit;

e prime — if p|(ab) = p|a or p|b.
Thus p prime = p irreducible, but not conversely in general, because of (¢) below.

Results on Principal Ideals.

(a) (a) = (b) if and only if a,b are associates. Thus the generator of a principal ideal
is unique to unit factors.

(b) A non-zero principal ideal (p) is a prime ideal if and only if the generator p is
prime.

(c) A non-zero principal ideal (m) is maximal (among principal ideals in R) if and
only if the generator m is irreducible.

Note that if (m) is maximal, then it is maximal among principal ideals. However,
the converse may fail if there are non-principal ideals J with

(m)CJCR.

Of course, this converse will hold in a P.I.D. (see below).

If R is an integral domain, so is R[x] (easy: look at leading coefficients).
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4. Any integral domain R embeds in a unique field of fractions K = Frac R. Any
isomorphism ¢ : R — S (of integral domains) extends uniquely to the respective fields
of fractions. In a sense, the field of fractions is “minimal” with this property.

5. Gauss’ Lemma for an Integral Domain R. Any prime p € R remains prime in R|x].

Proof. Let p € R be prime, so that [ = (p) is a prime ideal and R/I is an integral
domain. Suppose p|fg for f,g € Rlz|, say fg = ph. Passing to R[x]/I[z], we get
fg = 0 in the integral domain (R/I)[z] (see (1). Thus f or G is in I[z], so p divides
one or the other. O

[U.F.D.] Unique Factorization Domain.

1. By definition each x # 0 has an essentially unique factorization into irreducibles.

(a) If p irreducible and p|ab, then p must appear in the factorization of either a or b.
Thus

irreducible = prime.

(b) Alternatively, one may define a U.F.D. as an integral domain in which factoriza-
tions into irreducibles exist and in which irreducibles are prime.

In any case, in U.F.D.’s we have

irreducible < prime.
2. Any two elements in a U.F.D have a gcd and lem, unique to units.
3. For any f € R]x], the content
d =0(f) := ged({ all coefficients of f})

The content is thus determined to associates, and f = ¢ f; for some primitive polyno-
mial f; € R[x]. A primitive polynomial is one whose content is a unit. Consequently,
it cannot be 0.



4. Gauss’ Lemma for a UFD R. The product of two primitive polynomials f and g is
also primitive.

Standard Proof. Let f = > ax', g = > bx'. Say fg = 6h, for § € R and
h = > c¢;x' € R[z]. Suppose some prime p|d. Since f, g primitive, there exist ‘first’
coeffs. a,, bs not divisible by p. But then dc¢"™* = a,b,+ terms div. by p: contradiction.
So 0 is a unit and fg is primitive. O

Another Proof. If fg not primitive, there exists a prime p|(fg). By Gauss’ Lemma
for integral domains this means p|f or p|g, contradicting primitivity of one or the other

poly.

O

5. Corollaries.

(a)
(b)

The content of a product of polynomials is the product of the contents.

Suppose U.F.D. R has field of fractions K. Suppose h € R[z| factors over K|x]
as h = fg. Then there is a u € K with uf, v'g € R[z]. In short, h actually
factors in the base ring R[z].

Proof. For any poly. in K[z] we can find a common denom. for the coeffs. and
extract a ged for the new numerators. So there exist a,b,c,d € R and primitive
f1, 1 € R[x] with

a c
f—gflag—agl-
Thus

h = %f 191 5
where (ac)/(bd) = o/3, with «, 8 coprime in R. Thus Sh = a/f1g;. If some prime
p|B we get p|(fig1), again contradicting Gauss’ Lemma for integral domains, or
the fact that fig; is primitive. Hence [ is a unit in R and so h factors in R[z] as
h=(af1)(1g1). (Thus u=ba/a.) O
If a polynomial with coefficients in Z is irreducible in Z[z], then it is irreducible
in Q[z].
If Ris a U.F.D., then so is R[z] (and so also R[xy,...,x,]).
Proof. Let K be the field of fractions for R.
(i) if f € R[z] is irred., then either deg(f) = 0, whence f is irreducible in R, or
deg(f) > 0, whence f is irreducible in K[z] and is furthermore primitive in R[z]
(else the content §(f) is a non-trivial factor).

(ii) now any poly. g € K|x] fcators into irreducibles in K[z], since the latter is a
Euclidean domain (hence P.I.D., hence U.F.D.: see below). Using (i) we can now

7



rescale scalars throughout any factorization, and exploit the essential uniqueness
in Kz], to get unique factorization into irreducibles in R][z]. O

(e) Example in Z[z]: 62 — 242> — 242 —30=2-3- (2> +x+ 1) (z —5).
[P.I.D.] Principal Ideal Domain.

1. From above, a proper non-zero ideal here is prime if and only if it is maximal.

2. Here is a proof, appropriate to this context, that p irreducible implies p prime.

Proof. Say plab and let (¢) := (a) + (p). Thus p = xq. If = is a unit, then (p) = (),
so a € (p) and thus pla. If ¢ is a unit, then 1 = ya + zp, so b = y(ab) + (zb)p, so p|b.

3. A P.I.D. satisfies the A.C.C. on ideals. Indeed,

(al)g(ag)gg(az)g

implies there exists n with (a;) = (a,) for all ¢ > n. (The union is an ideal (b) and
b € (a,) for some n.)

4. The [A.C.C.] prevents an infinite sequence a,as, ... where each a; is a multiple of
aiy1- In turn, this implies factorization onto irreducibles. Now if there are two such
factorizations for

Xr=pPr-.-Pr—=4q1...4s,

we may suppose (p;) is the minimal ideal among all (p;), (¢;). Now work in the field
R/(p1) to show that (p1) = (g;) for some j. Essential uniqueness soon follows. This
explains why

PID. = UF.D.
[Euc. R.] Euclidean Rings.

1. These are P.I.D.’s. Examples include Z and k[x], for any field k.



2 Fourth Isomorphism Theorem

. Suppose ¢ : R — S be a ring epimorphism (mapping 1z to 1g when rings have units.) Let
K =kerp. On
Lr:={ideals J: K C J C R},

we define J := ¢(J); and on
Lg:={ideals L: L C S} .

we let L* := ¢~!(L). Then

1. S~R/K.

2. J+ Jand L — L* are well-defined mappings respecting inclusion of ideals; and

J=(J)*and L = (L") .

3. Lr and Lg are isomorphic as partially ordered sets.
4. J is maximal in R if and only J is maximal in S.
5. J is prime in R if and only J is prime in S.

6. R/J~S/J.

—_—

7. (LN Jy) = JiN o

e~

8. (J1+Jo) = Ji+ Ja.

Proof. This is all routine. The condition that K C .J eliminates problems. O



3 Modules and Integrality

1. Let A be a commutative ring with identity 1 = 14. Recall that

e an A -module M is finitely generated, or just finite, if it has a finite spanning set.

e the A-module endomorphisms A : M — M form a ring EndM with composition
as multiplication and with identity + = 1gyqp : M — M.

It is easy to see that scalar multiplication a)\, with a € A, A\ € EndM, interacts
as expected with addition and multiplication of endomorphisms. Thus EndM is
also an A-module, and in fact an A-algebra.

e M is said to be faithful as an A-module if am = 0,Vm € M, implies a = 0. In this
case, A embeds isomorphically in EndM via the scalar mappings pu, : M — M,
where pi,(m) = am.

2. Fix ¢ € EndM and let
Alp] = {an" + an 19"+ -+ arp+agr:a; € A n >0}

be the set of all polynomials in ¢. Thus A[p] is the subring of EndM generated by ¢
and all a, in other words, the subalgebra generated by .

Note that M now becomes an A[p]-module, taking ¢ - m = @(m).

Theorem 3.1. The Determinant Trick

Suppose the finite A-module M is spanned by mq,...,m,. Let ¢ : M — M be an
A-module endomorphism such that ¢(M) C IM for some ideal I of A. (Of course,
this always holds for I = (1) = A.) Then ¢ satisfies some monic relation

et a" T oot e =0 (2)

in Alp], with ¢; € I’ (the product ideal) for j =1,...,n,

Proof. For certain a;; € I we have
n
p(my) =Y arm; .
j=1

In A[yp] this gives
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Z(%’@ — agr)(my) =0, (3)

where 0;; € A. Let the matrix A = [dy;p — ax;t] over the ring Afyp] have adjoint
adjA = [by;]. Thus for all [, j we have

Z blk(ak]’@ — aka) = 5lj det(A)
k=1

Apply this last result to each m; and sum using (3) to conclude that all det(A)(m;) = 0.
Thus det(A) = 0 in Afp]. Expand this determinant to get (2). O

. Examples
(a) Suppose I = A and M is a free module with basis my, ..., m,. Then the matrix

for ¢ € EndM is [a;], with characteristic polynomial
X (t) = det[dy,t — ax;] -
Replacing t by ¢ (and 14 by @) we get
det[0x; — ax;?] =0

in EndM. This is the Cayley-Hamilton Theorem.

(b) If A is a subring of B, then the determinant trick is the key to proving that the
elements of B which are integral over A form a subring of B, i.e. the integral
closure of A in B.

Finitely Generated Modules and Nakayama’s Lemma

. Nakayama’s Lemma. Let V' be a finitely generated R-module and [ an ideal contained
in the Jacobson radical of R (i.e. in the intersection of all maximal ideals). Then
IV =V implies V = 0.

(For V20 let uy, ..., u, be a minimal set of generators; thus u,, = aju; + ... + a,uy,,
for some a; € I; since a,, for instance is in the Jacobson radical, 1 — a,, is a unit, which
means that u, is redundant: contradn.)
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2. Let R be a local ring with maximal ideal I. Suppose W is an R-submodule of the
R-module V| where V/W is finitely generated and such that V' = W + IV. Then
V=W.

3. If V is finite over R, then V/(IV') is a finite dimensional vector space over the residue
field k = R/I. And a spanning subset of this vector space lifts to a spanning subset of
V' considered as an R-module.

5 Finitely generated Algebras

Our sources are notes from Colin Ingalls, who in turn referred to www.mathreference.com.
See also Miles Reid’s book Undergraduate Commutative Algebra [2]. The key Theorem 5.2
below appears in that book in Section 4.2. Perhaps it makes sense to take that as the starting
point for a talk.

Lemma 5.1. Let R be a UFD which has infinitely many primes and is (embedded as)
a subring of a field A. Suppose A is finitely generated as an R-algebra. Then A cannot
be an algebraic extension of the fraction field F' for R.

Proof. Since A is a field, we have R C FF C A. We must understand the field
extension F© C A. So suppose A is algebraic over F' and let A = Rlzy,...,2,] as a
finitely generated algebra over R.

Each z; satisfies a monic polynomial p;(t) over F. Since R is a UFD, we have a least
common multiple d for all denominators of coefficients in the various p;. Thus each

1
; € =Rt .

Now let S := R[1/d], so
RCSCFCA.

Note that A = S[z1, ..., z,] and that each z; is integral over S. Since R has infinitely
many primes, there exists a prime ¢ € R such that ¢ t d. Note that 1/¢q € F but
1/q ¢ S. For if

1 ap ay

5:a0+g+”.+ﬁ’
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with a; € R, then
d* = q(agd® + - ay) ,

which forces £ = 0 and qag = 1: contradiction, as ¢ is not a unit.

But 1/q € A, so 1/q is integral over S. Suppose 1/q satisfies a monic polynomial of

degree k over S. Clear denominators using a suitable power d” to get
d* by, by
qu_k+F+".+g+bo’

where each b; € R. Multiply this by dXk=1) to get

dr dr

dL
0=1(, )+ bkfl(?)’“*l to (bldL’“*QL)(?)l 4 bydE-D)

Thus d*/q is integral over R. However, by a standard argument, R is integrally closed
in F. (This is the argument that a rational root of an integral polynomial must actually
be an integer.) Thus, d¥/q € R, which is a contradiction since ¢ 1 d.

— or more simply ... —

degree k over S. For a suitable power d© and b; € R, we can write this polynomial as

by — b b

k k=1 k-1 1 0
1z +d—L +"'—|—d—LZ‘+d—L.
Substitute x = 1/¢ and multiply by ¢*d* to get

0=d"+bp_1g+ - +bigd" " +bog" ,
which implies that ¢ | d¥, a contradiction. O

. Remark. We will need only the cases R = Z or R = K[z|, where K is a field. Both are
Euclidean domains; and in each case we have Euclid’s proof of the infinity of primes.

Theorem 5.2. Let A be a finitely generated algebra of the field K, that is A =
Ky, ..., yn] for certain y; € A. Then A is a field only if it has finite dimension
as a vector space over K.

13
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Proof. Suppose A = K|y, ...,y is a field. Proceed by induction on n.

If n =0, then A = K and dim(A : K) = 0. If n = 1, then we have an epimorphism
¢ K[t] = A = Kly1], say with kernel M. Since A is a field, M is maximal; and since
K|t] is a PID, M = (p(t)), where p(t) is irreducible over K. Then A ~ KJt]/M and
dim(A : K) = deg(p) < 0.

Suppose then that any field generated as a ring over a subfield by fewer than n gener-

ators is in fact finite-dimensional over that subfield.

Now consider A = Ky, ...,y,] and let R = K{y], a subring of A. Let F' be the field
of fractions of R, so F'is a subfield of A. Since y; € R C F', we have A = Flya, ..., Yn].
Indeed, A is even finitely generated as an R-algebra. By induction, dim(A : F') < oo,
so A is algebraic over F. We are done if we can show dim(F' : K) < oc.

Now if y; were transcendental over K, R = Kly;| would be a UFD with infinitely many
primes. This violates Lemma 5.1.

Thus y; is a root of some polynomial w(t) € KJt] of minimal degree; w(t) must be
irreducible over K and R = K|[y;] an field extension of finite dimension over K. But
then F' = R, so dim(F' : K) < oo. O

. Remark. Theorem 5.2 might be called the Weak Nullstellensatz.

There is a partial converse. Suppose in addition that A is an integral domain for which
dim(A : K) < oo. For each non-zero a € A we may define a K-linear map A — A by
x — ax. This map is injective, hence surjective, so that there exists © € A such that
ar = 1. Thus A is in fact a field.

. Definition. A ring R is said to be finitely generated if there is some ring epimorphism
w:Zxy,...,x,) — R.

In other words, there are generators rq,...,r, € R such that each element of R is a
Z-linear combination of various products of these 7;s.

Theorem 5.3. Let M be a mazimal ideal in a finitely generated ring R. Then A :=
R/M is a finite field.

Proof. Let R be the image of Z in A and let K be the field of fractions of R. Clearly,
the field A is finitely generated over R. Moreover, it is also finitely generated over K.
By Theorem 5.2, dim(A : K) < 0.

14



If K has characteristic 0, then Z ~ R is embedded in A and once more we contradict
Lemma 5.1.

Thus K ~ Z, for some prime p. By Theorem 5.2 we conclude that A is a finite field.
O

Theorem 5.4. Let R be a finitely generated integral domain. Then for each non-zero
2z € R there exists a maximal ideal P such that z ¢ P. In short, the Jacobson radical

J(R) = {0}.

Proof. Consider the subring R[1/z] in the fraction field F' of R. Let M be a maximal
ideal in R[1/z] and set P := M N R.

Clearly P is an ideal in R. In fact, P is prime. For suppose ab € P but a ¢ P. Then
a & M so M+ R[1/z]-a = R[1/z]. For some polynomial ¢(t) over R and m € M we
have m + q(1/2z)a = 1. Multiply by b to see that b € P.

On the other hand z ¢ P. For if z € P, then z € M; since 1/z € R[1/z], we get
1=2(1/z) € M, a contradiction.

The inclusion P C M induces a well-defined injection p : R/P — R[1/z]/M. By
Theorem 5.3, A := R[1/z]/M is a finite field. Note that R is finitely generated as a
ring; therefore, so also is R[1/z].

Thus R/P is a finite integral domain, hence also a finite field, isomorphic to a subfield
of A. Thus the ideal P is actually maximal, and we have z & P. O

Theorem 5.5. Weak Nullstellensatz
Suppose k be an algebraically closed field. Let M be a maximal ideal in k[xq, ..., x,].
Then

M= (x1—a1,...,T, — ay)

for certain a; € k.

Moreover, for any proper ideal J C R, the variety
V(J)#0D.

Proof. We have ¢ : k[xy,...,2,] — A = Ek[xy,...,z,|/M. Ais a field since M is
maximal and is clearly finitely generated over ¢(k). (The elements ¢(x;), 1 < i < n,
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serve as generators.) Also, k ~ (k) since M is maximal and therefore contains no
non-zero element of k.

Thus dim(A : ¢(k)) < oo by Theorem 5.2, so A is algebraic over ¢(k). Therefore
A = p(k) ~ k, since k is algebraically closed. Let ¢(a;) = ¢(z;) for certain a; € k.
Thus each x; — a; € M. But the ideal W = (z; — ay,..., 2, — a,) is itself maximal,
hence must equal M. (Remark: think of W as a vector subspace of k[zy, ..., z,]|. Since
1 ¢ W, we have k[zq,...,2,] = k- 1@ W as linear spaces. But as a linear space M is
trapped, so M = W.)

For the second part, any proper ideal J must be contained in some maximal ideal
M= (x—ay,...,x — a,), so that the affine point (ay,...,a,) € V(J). d
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10.

Residually Finite Groups

Definition 5.6. A group I' is residually finite if for any g € I', g # 1, there exists a
homomorphism ¢ : T’ — G, where G is finite and ¢(g) # 1.

Remarks. Any finite group I' is clearly residually finite. We can assume in the
definition that ¢ is onto.

Theorem 5.7. The following are equivalent for a group I':

(a) T is residually finite.
(b) For any finite subset A C T there exists an epimorphism
p:I'=G

onto a finite group G such that @4 is bijective, i.e. the p(a) are distinct for all
a€ A

(c) For any finite subset A C T', with 1 € A, there exists an epimorphism
po:I'—=G
onto a finite group G such that p(a) # 1 for all a € A.

Proof. We need only prove (a) = (b). Suppose A = {a4,...,a,}. For each i < j we
have a homomorphism ¢; ; : I' — G ; onto a finite group G; ; such that gpi,j(aiaj_l) # 1.

Then the direct product
Y= H%‘,j T — HGi,j
i<j 1<j

does the job. O

Theorem 5.8. Let I' be any finitely generated subgroup of GL,(F) over the field F.
Then T is residually finite. More specifically, suppose ay,...,a; are distinct elements
of I'. Then there is a finite field K and a homomorphism

¢: ' = GL,(K)

such that the p(a;) are all distinct. Furthermore, if char(F) > 0, then we can take
char(K) = char(F).
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Proof. Suppose I' is generated by {g1, . . ., g, }; with no loss of generality we can assume
this set is closed under taking inverses. For 1 < k < 7, let gx = [vi;x]; and let P be
be the subring of F' generated by 1. Thus, P is the prime subfield if char(F) > 0;
otherwise, P ~ Z.

Now let

Thus R is a finitely generated integral domain and we have I' C G L, (R).

For each 7 < j we may chose an entry in which matrices a; and a; differ; let b; ; be the
difference of these entries and set b := [, _ ;bij. Thus b # 0; and by Theorem 5.4 there
exists a maximal ideal M with b ¢ M. The natural map x : R — R/M =: K induces
a group homomorphism ¢ : I' — G L, (K) which does the job. Note that K is a finite
field by Theorem 5.3, so that GL,(K) is a finite group. If char(P) > 0, the additive
order of 1 € P cannot collapse, so that also char(K) = char(F). O

11. The next result appears as Theorem 3.4B in Dixon’s book The Structure of Linear
Groups [1].

Theorem 5.9. Let ' be a finite irreducible subgroup of GL,(F), where F is alge-
braically closed. Then there is a finite extension K of the prime subfield of F' such that
[ is conjugate in GL,(F) to a subgroup of GL,(K).

Proof.

Exercise. Is it possible to prove this using the machinery outlined above? The word

‘conjugate’ will be the sticking point. 0
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