
Notes on Commutative Rings

1 A hierarchy of commutative rings

Euc. R ⇒ P.I.D. ⇒ U.F.D. ⇒ Int. D. ⇒ Comm.R.

[Comm.R.] Commutative Ring R with 1 6= 0.

1. The ideal generated by {a1, . . . , an} is the set of all R-linear combinations r1a1 + . . .+
rnan. A principal ideal (a) has one such generator.

2. The set R× of units is a multiplicative group. (Units are the elements with multiplica-
tive inverses. They cannot be zerodivisors. A zerodivisor is an a 6= 0 such that ab = 0
for some other b 6= 0.)

3. (a) A proper ideal I is

• prime if ab ∈ I ⇒ a ∈ I or b ∈ I;

• maximal if I ⊆ J ⊆ R⇒ J = I or J = R.

[We allow I = (0).]

(b) Maximal ideal ⇒ Prime ideal.

In Z[x], I = (x) is prime but not maximal. Note Z[x]/(x) ' Z.

(c) I maximal ⇔ R/I field.

I prime ⇔ R/I integral domain.

(d) If ideal I 6= R, then there exists a maximal ideal M with I ⊆M ⊂ R.

(e) Thus every non-unit b (which is in a proper ideal (b)) must lie in a maximal ideal.

4. More on Maximal Ideals, Local Rings, Radical Ideals

(a) Note: If a 6∈ M , a maximal ideal, then R = M + Ra, so that a is a unit mod M .
Thus R \M consists of units mod M .

(b) Suppose M is a proper ideal in R. We say that R is a local ring if M is the unique
maximal ideal in R.



• R \M consists entirely of units in R⇔ M unique maximal. (For⇐: if x is a
non-unit, then (x) is a proper ideal, hence lies in some maximal ideal, hence
is contained in M by uniqueness.)

• If M is maximal and 1 +M consists of units, then M is the unique maximal
ideal and R is a local ring. (For if u ∈ R \M , then 1 = xu + m for some
m ∈M, x ∈ R, so xu = 1 + (−m) is a unit, so u is a unit; see previous item.)

(c) The nilradical Nil of R consists of all nilpotent elements of R (xn = 0 for some
positive integer n). It’s easy to prove this is an ideal; and R/Nil has no non-zero
nilpotent elements. Further, Nil is the intersection of all prime ideals in R. (Note:
⊇ involves the construction of a suitable prime ideal; see Reid for a Zorn’s Lemma
argument involving multiplicative sets.)

(d) The Jacobson radical Jac of R is the intersection of all maximal ideals. Further-
more, x ∈ Jac if–f 1− xy is a unit in R for all y ∈ R.

(e) The radical of an ideal I is
√
I := {x ∈ R : xk ∈ I, for some k > 1} .

Thus
√
I is an ideal; I ⊆

√
I; and

√
I is the intersection of all the prime ideals

containing I.

Thus
√
R = R and

√
(0) = Nil.

5. (a) The sum of ideals I, J is the ideal

I + J := {a+ b | a ∈ I, b ∈ J}.

Eg. If M maximal, and ab ∈ M , then each of M + Ra, M + Rb equals M or
R. If both equal R, then 1 = m1 + r1a = m2 + r2b; multiply to get 1 ∈ M , a
contradiction. Thus maximal ⇒ prime.

(b) Ideals I, J are relatively prime if I + J = R.

6. Polynomials. The polynomial ring R[x] is determined by the following universal prop-
erty: there is a ring embedding µ : R → R[x] and an element x ∈ R[x] such that
for any homomorphism ϕ : R → S and specific element c ∈ S there exists a unique
homomorphism ϕc : R[x]→ S with ϕ = µϕc (compose left to right) and xϕc = c.

R
µ //

ϕ
!!CC

CC
CC

CC
C R[x]

ϕc

��
S
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If I is a proper ideal in R, we thus have

R[x]/I[x] ' (R/I)[x] . (1)

That is, factor by the ideal (in R[x]) of all polynomials with coefficients in I.

7. Eisenstein:

If M is maximal in R and

f(x) = anx
n + . . .+ a0 (n > 1)

with an 6∈ M, ai ∈ M for all i < n, and a0 6∈ M2, then f is irreducible over R. (That
is, f = gh forces g or h to be a constant polynomial.)

So suppose g =
∑r

0 bix
i, h =

∑s
0 cix

i, where r + s = n = deg f , with r, s > 0. Since
a0 ∈ M but a0 6∈ M2, we can w.l.o.g. assume b0 ∈ M and c0 6∈ M . (Note that
a0 ≡ b0c0 ≡ 0 in the field R/M .) But an = brcs 6∈M , so let j be minimal with bj 6∈M .
Thus j > 1. Consider

aj = b0cj + . . .+ bj−1c1 + bjc0 (mod M) .

This gives a contradiction.

8. The product IJ of ideals I, J consists of all finite sums of products ab, where a ∈
I, B ∈ J .

We similarly define the product of ideals I1, . . . , Im. Always we have for ideals J, Ik:

(a) I1 . . . Im = (I1 . . . Im−1)Im.

(b) I1 . . . Im ⊆ I1 ∩ . . . ∩ Im.

(c) (I1 + J)(I2 + J) . . . (Im + J) ⊆ (I1 . . . Im) + J .
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9. Theorem. Let I1, . . . , Im be pairwise relatively prime ideals, and for 1 6 k 6 m let

Îk :=
⋂
i 6=k

Ii = I1 ∩ . . . ∩ Ik−1 ∩ Ik+1 ∩ . . . ∩ Im .

Then

(a) I1 . . . Im = I1 ∩ . . . ∩ Im.

(b) For 1 6 k 6 m, Ik and Îk are relatively prime.

Proof. (Induction on m.)

(i) m = 2. Part (b) follows by definition. Since R = I1 +I2, there exist a ∈ I1, b ∈ I2
with 1 = a+ b. Thus x ∈ I1 ∩ I2 ⇒ x = ax+ xb ∈ I1I2. This proves (a).

(ii) For m > 2, we may assume by induction that for 1 6 k 6 m,

Îk = I1 . . . Ik−1Ik+1 . . . Im .

Thus

R = (Ik + I1) . . . (Ik + Ik−1)(Ik + Ik+1) . . . (Ik + Im) ⊆ Ik + Îk ⊆ R.

This proves part (b). Next note that

I1 . . . Im = (I1 . . . Im−1)Im

= ÎmIm (induction, (a))

= Îm ∩ Im (induction, m = 2)

= (I1 ∩ . . . ∩ Im−1) ∩ Im (induction).

This end the proof.

Note that if Ik, Îk are relatively prime, then Ik, Ii are relatively prime for all
i 6= k, since Ii ⊇ Îk, so that Ii + Ik = R.
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10. Chinese Remainder Theorem. Suppose that I1, . . . , Im are pairwise relatively
prime ideals. Then the natural mapping

R/

m⋂
k=1

Ik → R/I1 × . . .×R/Im

is an isomorphism.

Proof. It’s easy to check this mapping is well-defined and 1 − 1. By the previous
theorem, for 1 6 k 6 m there exist ak ∈ Ik, bk ∈ Îk with 1 = ak + bk. For any
r1, . . . , rm ∈ R, let r = r1b1 + . . .+ rmbm. Then r ≡ rk (mod Ik) for 1 6 k 6 m, so the
above mapping is onto.

[Int. D] Integral Domain – no zerodivisors, so that cancellation holds.

1. A non-unit, non-zero element p is

• irreducible – if p = ab⇒ a or b is a unit;

• prime – if p|(ab)⇒ p|a or p|b.

Thus p prime ⇒ p irreducible, but not conversely in general, because of (c) below.

2. Results on Principal Ideals.

(a) (a) = (b) if and only if a, b are associates. Thus the generator of a principal ideal
is unique to unit factors.

(b) A non-zero principal ideal (p) is a prime ideal if and only if the generator p is
prime.

(c) A non-zero principal ideal (m) is maximal (among principal ideals in R) if and
only if the generator m is irreducible.

Note that if (m) is maximal, then it is maximal among principal ideals. However,
the converse may fail if there are non-principal ideals J with

(m) ⊂ J ⊂ R.

Of course, this converse will hold in a P.I.D. (see below).

3. If R is an integral domain, so is R[x] (easy: look at leading coefficients).
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4. Any integral domain R embeds in a unique field of fractions K = Frac R. Any
isomorphism ϕ : R→ S (of integral domains) extends uniquely to the respective fields
of fractions. In a sense, the field of fractions is “minimal” with this property.

5. Gauss’ Lemma for an Integral Domain R. Any prime p ∈ R remains prime in R[x].

Proof. Let p ∈ R be prime, so that I = (p) is a prime ideal and R/I is an integral
domain. Suppose p|fg for f, g ∈ R[x], say fg = ph. Passing to R[x]/I[x], we get
fg = 0 in the integral domain (R/I)[x] (see (1). Thus f or G is in I[x], so p divides
one or the other. �

[U.F.D.] Unique Factorization Domain.

1. By definition each x 6= 0 has an essentially unique factorization into irreducibles.

(a) If p irreducible and p|ab, then p must appear in the factorization of either a or b.
Thus

irreducible ⇒ prime.

(b) Alternatively, one may define a U.F.D. as an integral domain in which factoriza-
tions into irreducibles exist and in which irreducibles are prime.

In any case, in U.F.D.’s we have

irreducible ⇔ prime.

2. Any two elements in a U.F.D have a gcd and lcm, unique to units.

3. For any f ∈ R[x], the content

δ = δ(f) := gcd({ all coefficients of f})

The content is thus determined to associates, and f = δf1 for some primitive polyno-
mial f1 ∈ R[x]. A primitive polynomial is one whose content is a unit. Consequently,
it cannot be 0.
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4. Gauss’ Lemma for a UFD R. The product of two primitive polynomials f and g is
also primitive.

Standard Proof. Let f =
∑
aix

i, g =
∑
bix

i. Say fg = δh, for δ ∈ R and
h =

∑
cix

i ∈ R[x]. Suppose some prime p|δ. Since f, g primitive, there exist ‘first’
coeffs. ar, bs not divisible by p. But then δcr+s = arbs+ terms div. by p: contradiction.
So δ is a unit and fg is primitive. �

Another Proof. If fg not primitive, there exists a prime p|(fg). By Gauss’ Lemma
for integral domains this means p|f or p|g, contradicting primitivity of one or the other
poly. �

5. Corollaries.

(a) The content of a product of polynomials is the product of the contents.

(b) Suppose U.F.D. R has field of fractions K. Suppose h ∈ R[x] factors over K[x]
as h = fg. Then there is a u ∈ K with uf, u−1g ∈ R[x]. In short, h actually
factors in the base ring R[x].

Proof. For any poly. in K[x] we can find a common denom. for the coeffs. and
extract a gcd for the new numerators. So there exist a, b, c, d ∈ R and primitive
f1, g1 ∈ R[x] with

f =
a

b
f1 , g =

c

d
g1 .

Thus
h =

α

β
f1g1 ,

where (ac)/(bd) = α/β, with α, β coprime in R. Thus βh = αf1g1. If some prime
p|β we get p|(f1g1), again contradicting Gauss’ Lemma for integral domains, or
the fact that f1g1 is primitive. Hence β is a unit in R and so h factors in R[x] as
h = (αf1)(β

−1g1). (Thus u = bα/a.) �

(c) If a polynomial with coefficients in Z is irreducible in Z[x], then it is irreducible
in Q[x].

(d) If R is a U.F.D., then so is R[x] (and so also R[x1, . . . , xn]).

Proof. Let K be the field of fractions for R.

(i) if f ∈ R[x] is irred., then either deg(f) = 0, whence f is irreducible in R, or
deg(f) > 0, whence f is irreducible in K[x] and is furthermore primitive in R[x]
(else the content δ(f) is a non-trivial factor).

(ii) now any poly. g ∈ K[x] fcators into irreducibles in K[x], since the latter is a
Euclidean domain (hence P.I.D., hence U.F.D.: see below). Using (i) we can now
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rescale scalars throughout any factorization, and exploit the essential uniqueness
in K[x], to get unique factorization into irreducibles in R[x]. �

(e) Example in Z[x]: 6x3 − 24x2 − 24x− 30 = 2 · 3 · (x2 + x+ 1) · (x− 5).

[P.I.D.] Principal Ideal Domain.

1. From above, a proper non-zero ideal here is prime if and only if it is maximal.

2. Here is a proof, appropriate to this context, that p irreducible implies p prime.

Proof. Say p|ab and let (q) := (a) + (p). Thus p = xq. If x is a unit, then (p) = (q),
so a ∈ (p) and thus p|a. If q is a unit, then 1 = ya+ zp, so b = y(ab) + (zb)p, so p|b.

3. A P.I.D. satisfies the A.C.C. on ideals. Indeed,

(a1) ⊆ (a2) ⊆ . . . ⊆ (ai) ⊆ . . .

implies there exists n with (ai) = (an) for all i > n. (The union is an ideal (b) and
b ∈ (an) for some n.)

4. The [A.C.C.] prevents an infinite sequence a1, a2, . . . where each ai is a multiple of
ai+1. In turn, this implies factorization onto irreducibles. Now if there are two such
factorizations for

x = p1 . . . pr = q1 . . . qs,

we may suppose (p1) is the minimal ideal among all (pj), (qj). Now work in the field
R/(p1) to show that (p1) = (qj) for some j. Essential uniqueness soon follows. This
explains why

P.I.D. ⇒ U.F.D.

[Euc. R.] Euclidean Rings.

1. These are P.I.D.’s. Examples include Z and k[x], for any field k.
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2 Fourth Isomorphism Theorem

. Suppose ϕ : R→ S be a ring epimorphism (mapping 1R to 1S when rings have units.) Let
K = kerϕ. On

LR := {ideals J : K ⊆ J ⊆ R} ,

we define J̃ := ϕ(J); and on

LS := {ideals L : L ⊆ S} .

we let L∗ := ϕ−1(L). Then

1. S ' R/K.

2. J 7→ J̃ and L 7→ L∗ are well-defined mappings respecting inclusion of ideals; and

J = (J̃)∗ and L = (̃L∗) .

3. LR and LS are isomorphic as partially ordered sets.

4. J is maximal in R if and only J̃ is maximal in S.

5. J is prime in R if and only J̃ is prime in S.

6. R/J ' S/J̃ .

7. ˜(J1 ∩ J2) = J̃1 ∩ J̃2.

8. ˜(J1 + J2) = J̃1 + J̃2.

Proof. This is all routine. The condition that K ⊆ J eliminates problems. �
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3 Modules and Integrality

1. Let A be a commutative ring with identity 1 = 1A. Recall that

• an A -module M is finitely generated, or just finite, if it has a finite spanning set.

• the A-module endomorphisms λ : M → M form a ring EndM with composition
as multiplication and with identity ı = 1EndM : M →M .

It is easy to see that scalar multiplication aλ, with a ∈ A, λ ∈ EndM , interacts
as expected with addition and multiplication of endomorphisms. Thus EndM is
also an A-module, and in fact an A-algebra.

• M is said to be faithful as an A-module if am = 0,∀m ∈M , implies a = 0. In this
case, A embeds isomorphically in EndM via the scalar mappings µa : M → M ,
where µa(m) = am.

2. Fix ϕ ∈ EndM and let

A[ϕ] := {anϕn + an−1ϕ
n−1 + · · ·+ a1ϕ+ a0ı : aj ∈ A, n > 0}

be the set of all polynomials in ϕ. Thus A[ϕ] is the subring of EndM generated by ϕ
and all a ı, in other words, the subalgebra generated by ϕ.

Note that M now becomes an A[ϕ]-module, taking ϕ ·m := ϕ(m).

3.

Theorem 3.1. The Determinant Trick

Suppose the finite A-module M is spanned by m1, . . . ,mn. Let ϕ : M → M be an
A-module endomorphism such that ϕ(M) ⊆ IM for some ideal I of A. (Of course,
this always holds for I = (1) = A.) Then ϕ satisfies some monic relation

ϕn + c1ϕ
n−1 + · · ·+ cn−1ϕ+ cnı = 0 (2)

in A[ϕ], with cj ∈ Ij (the product ideal) for j = 1, . . . , n,

Proof. For certain akj ∈ I we have

ϕ(mj) =
n∑
j=1

akjmj .

In A[ϕ] this gives
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n∑
j=1

(δkjϕ− akjı)(mj) = 0 , (3)

where δkj ∈ A. Let the matrix ∆ = [δkjϕ − akjı] over the ring A[ϕ] have adjoint
adj∆ = [bkj]. Thus for all l, j we have

n∑
k=1

blk(δkjϕ− akjı) = δlj det(∆).

Apply this last result to eachmj and sum using (3) to conclude that all det(∆)(mj) = 0.
Thus det(∆) = 0 in A[ϕ]. Expand this determinant to get (2). �

4. Examples

(a) Suppose I = A and M is a free module with basis m1, . . . ,mn. Then the matrix
for ϕ ∈ EndM is [akj], with characteristic polynomial

χ(t) = det[δkjt− akj] .

Replacing t by ϕ (and 1A by ı) we get

det[δkjϕ− akjı] = 0

in EndM . This is the Cayley-Hamilton Theorem.

(b) If A is a subring of B, then the determinant trick is the key to proving that the
elements of B which are integral over A form a subring of B, i.e. the integral
closure of A in B.

4 Finitely Generated Modules and Nakayama’s Lemma

1. Nakayama’s Lemma. Let V be a finitely generated R–module and I an ideal contained
in the Jacobson radical of R (i.e. in the intersection of all maximal ideals). Then
IV = V implies V = 0.

(For V 6= 0 let u1, . . . , un be a minimal set of generators; thus un = a1u1 + . . .+ anun,
for some aj ∈ I; since an for instance is in the Jacobson radical, 1− an is a unit, which
means that un is redundant: contradn.)
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2. Let R be a local ring with maximal ideal I. Suppose W is an R-submodule of the
R-module V , where V/W is finitely generated and such that V = W + IV . Then
V = W .

3. If V is finite over R, then V/(IV ) is a finite dimensional vector space over the residue
field k = R/I. And a spanning subset of this vector space lifts to a spanning subset of
V considered as an R-module.

5 Finitely generated Algebras

Our sources are notes from Colin Ingalls, who in turn referred to www.mathreference.com.
See also Miles Reid’s book Undergraduate Commutative Algebra [2]. The key Theorem 5.2
below appears in that book in Section 4.2. Perhaps it makes sense to take that as the starting
point for a talk.

1.

Lemma 5.1. Let R be a UFD which has infinitely many primes and is (embedded as)
a subring of a field A. Suppose A is finitely generated as an R-algebra. Then A cannot
be an algebraic extension of the fraction field F for R.

Proof. Since A is a field, we have R ⊆ F ⊆ A. We must understand the field
extension F ⊆ A. So suppose A is algebraic over F and let A = R[z1, . . . , zm] as a
finitely generated algebra over R.

Each zi satisfies a monic polynomial pi(t) over F . Since R is a UFD, we have a least
common multiple d for all denominators of coefficients in the various pi. Thus each

pi ∈
1

d
R[t] .

Now let S := R[1/d], so
R ⊆ S ⊆ F ⊆ A .

Note that A = S[z1, . . . , zm] and that each zi is integral over S. Since R has infinitely
many primes, there exists a prime q ∈ R such that q - d. Note that 1/q ∈ F but
1/q 6∈ S. For if

1

q
= a0 +

a1

d
+ · · ·+ ak

dk
,
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with aj ∈ R, then
dk = q(a0d

k + · · · ak) ,

which forces k = 0 and qa0 = 1: contradiction, as q is not a unit.

But 1/q ∈ A, so 1/q is integral over S. Suppose 1/q satisfies a monic polynomial of
degree k over S. Clear denominators using a suitable power dL to get alternate

expla-
nation
below

0 =
dL

qk
+
bk−1

qk−1
+ · · ·+ b1

q
+ b0 ,

where each bj ∈ R. Multiply this by dL(k−1) to get

0 = 1(
dL

q
)k + bk−1(

dL

q
)k−1 + · · ·+ (b1d

Lk−2L)(
dL

q
)1 + b0d

L(k−1) .

Thus dL/q is integral over R. However, by a standard argument, R is integrally closed
in F . (This is the argument that a rational root of an integral polynomial must actually
be an integer.) Thus, dL/q ∈ R, which is a contradiction since q - d.

– or more simply ... –

degree k over S. For a suitable power dL and bj ∈ R, we can write this polynomial as

1xk +
bk−1

dL
xk−1 + · · ·+ b1

dL
x+

b0
dL

.

Substitute x = 1/q and multiply by qkdL to get

0 = dL + bk−1q + · · ·+ b1q
k−1 + b0q

k ,

which implies that q | dL, a contradiction. �

2. Remark. We will need only the cases R = Z or R = K[x], where K is a field. Both are
Euclidean domains; and in each case we have Euclid’s proof of the infinity of primes.

3.

Theorem 5.2. Let A be a finitely generated algebra of the field K, that is A =
K[y1, . . . , yn] for certain yj ∈ A. Then A is a field only if it has finite dimension
as a vector space over K.
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Proof. Suppose A = K[y1, . . . , yn] is a field. Proceed by induction on n.

If n = 0, then A = K and dim(A : K) = 0. If n = 1, then we have an epimorphism
ϕ : K[t]→ A = K[y1], say with kernel M . Since A is a field, M is maximal; and since
K[t] is a PID, M = (p(t)), where p(t) is irreducible over K. Then A ' K[t]/M and
dim(A : K) = deg(p) <∞.

Suppose then that any field generated as a ring over a subfield by fewer than n gener-
ators is in fact finite-dimensional over that subfield.

Now consider A = K[y1, . . . , yn] and let R = K[y1], a subring of A. Let F be the field
of fractions of R, so F is a subfield of A. Since y1 ∈ R ⊆ F , we have A = F [y2, . . . , yn].
Indeed, A is even finitely generated as an R-algebra. By induction, dim(A : F ) < ∞,
so A is algebraic over F . We are done if we can show dim(F : K) <∞.

Now if y1 were transcendental over K, R = K[y1] would be a UFD with infinitely many
primes. This violates Lemma 5.1.

Thus y1 is a root of some polynomial w(t) ∈ K[t] of minimal degree; w(t) must be
irreducible over K and R = K[y1] an field extension of finite dimension over K. But
then F = R, so dim(F : K) <∞. �

4. Remark. Theorem 5.2 might be called the Weak Nullstellensatz.

There is a partial converse. Suppose in addition that A is an integral domain for which
dim(A : K) < ∞. For each non-zero a ∈ A we may define a K-linear map A → A by
x 7→ ax. This map is injective, hence surjective, so that there exists x ∈ A such that
ax = 1. Thus A is in fact a field.

5. Definition. A ring R is said to be finitely generated if there is some ring epimorphism

ϕ : Z[x1, . . . , xn]→ R .

In other words, there are generators r1, . . . , rn ∈ R such that each element of R is a
Z-linear combination of various products of these rjs.

6.

Theorem 5.3. Let M be a maximal ideal in a finitely generated ring R. Then A :=
R/M is a finite field.

Proof. Let R be the image of Z in A and let K be the field of fractions of R. Clearly,
the field A is finitely generated over R. Moreover, it is also finitely generated over K.
By Theorem 5.2, dim(A : K) <∞.
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If K has characteristic 0, then Z ' R is embedded in A and once more we contradict
Lemma 5.1.

Thus K ' Zp for some prime p. By Theorem 5.2 we conclude that A is a finite field.

�

7.

Theorem 5.4. Let R be a finitely generated integral domain. Then for each non-zero
z ∈ R there exists a maximal ideal P such that z 6∈ P . In short, the Jacobson radical
J(R) = {0}.
Proof. Consider the subring R[1/z] in the fraction field F of R. Let M be a maximal
ideal in R[1/z] and set P := M ∩R.

Clearly P is an ideal in R. In fact, P is prime. For suppose ab ∈ P but a 6∈ P . Then
a 6∈ M so M + R[1/z] · a = R[1/z]. For some polynomial q(t) over R and m ∈ M we
have m+ q(1/z)a = 1. Multiply by b to see that b ∈ P .

On the other hand z 6∈ P . For if z ∈ P , then z ∈ M ; since 1/z ∈ R[1/z], we get
1 = z(1/z) ∈M , a contradiction.

The inclusion P ⊆ M induces a well-defined injection µ : R/P → R[1/z]/M . By
Theorem 5.3, A := R[1/z]/M is a finite field. Note that R is finitely generated as a
ring; therefore, so also is R[1/z].

Thus R/P is a finite integral domain, hence also a finite field, isomorphic to a subfield
of A. Thus the ideal P is actually maximal, and we have z 6∈ P . �

8.

Theorem 5.5. Weak Nullstellensatz
Suppose k be an algebraically closed field. Let M be a maximal ideal in k[x1, . . . , xn].
Then

M = (x1 − a1, . . . , xn − an)

for certain ai ∈ k.

Moreover, for any proper ideal J ⊂ R, the variety

V (J) 6= ∅ .

Proof. We have ϕ : k[x1, . . . , xn] → A := k[x1, . . . , xn]/M . A is a field since M is
maximal and is clearly finitely generated over ϕ(k). (The elements ϕ(xi), 1 6 i 6 n,
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serve as generators.) Also, k ' ϕ(k) since M is maximal and therefore contains no
non-zero element of k.

Thus dim(A : ϕ(k)) < ∞ by Theorem 5.2, so A is algebraic over ϕ(k). Therefore
A = ϕ(k) ' k, since k is algebraically closed. Let ϕ(ai) = ϕ(xi) for certain ai ∈ k.
Thus each xi − ai ∈ M . But the ideal W = (x1 − a1, . . . , xn − an) is itself maximal,
hence must equal M . (Remark: think of W as a vector subspace of k[x1, . . . , xn]. Since
1 6∈ W , we have k[x1, . . . , xn] = k · 1⊕W as linear spaces. But as a linear space M is
trapped, so M = W .)

For the second part, any proper ideal J must be contained in some maximal ideal
M = (x− a1, . . . , x− an), so that the affine point (a1, . . . , an) ∈ V (J). �
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Residually Finite Groups

9.

Definition 5.6. A group Γ is residually finite if for any g ∈ Γ, g 6= 1, there exists a
homomorphism ϕ : Γ→ G, where G is finite and ϕ(g) 6= 1.

Remarks. Any finite group Γ is clearly residually finite. We can assume in the
definition that ϕ is onto.

10.

Theorem 5.7. The following are equivalent for a group Γ:

(a) Γ is residually finite.

(b) For any finite subset A ⊆ Γ there exists an epimorphism

ϕ : Γ→ G

onto a finite group G such that ϕ|A is bijective, i.e. the ϕ(a) are distinct for all
a ∈ A.

(c) For any finite subset A ⊆ Γ, with 1 6∈ A, there exists an epimorphism

ϕ : Γ→ G

onto a finite group G such that ϕ(a) 6= 1 for all a ∈ A.

Proof. We need only prove (a) ⇒ (b). Suppose A = {a1, . . . , ar}. For each i < j we
have a homomorphism ϕi,j : Γ→ Gi,j onto a finite group Gi,j such that ϕi,j(aia

−1
j ) 6= 1.

Then the direct product

ϕ :=
∏
i<j

ϕi,j : Γ→
∏
i<j

Gi,j

does the job. �

Theorem 5.8. Let Γ be any finitely generated subgroup of GLn(F ) over the field F .
Then Γ is residually finite. More specifically, suppose a1, . . . , at are distinct elements
of Γ. Then there is a finite field K and a homomorphism

ϕ : Γ→ GLn(K)

such that the ϕ(ai) are all distinct. Furthermore, if char(F ) > 0, then we can take
char(K) = char(F ).
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Proof. Suppose Γ is generated by {g1, . . . , gr}; with no loss of generality we can assume
this set is closed under taking inverses. For 1 6 k 6 r, let gk = [γi,j,k]; and let P be
be the subring of F generated by 1. Thus, P is the prime subfield if char(F ) > 0;
otherwise, P ' Z.

Now let
R := P [γi,j,k : 1 6 i, j 6 n; 1 6 k 6 r] .

Thus R is a finitely generated integral domain and we have Γ ⊆ GLn(R).

For each i < j we may chose an entry in which matrices ai and aj differ; let bi,j be the
difference of these entries and set b :=

∏
i<j bi,j. Thus b 6= 0; and by Theorem 5.4 there

exists a maximal ideal M with b 6∈ M . The natural map χ : R → R/M =: K induces
a group homomorphism ϕ : Γ→ GLn(K) which does the job. Note that K is a finite
field by Theorem 5.3, so that GLn(K) is a finite group. If char(P ) > 0, the additive
order of 1 ∈ P cannot collapse, so that also char(K) = char(F ). �

11. The next result appears as Theorem 3.4B in Dixon’s book The Structure of Linear
Groups [1].

Theorem 5.9. Let Γ be a finite irreducible subgroup of GLn(F ), where F is alge-
braically closed. Then there is a finite extension K of the prime subfield of F such that
Γ is conjugate in GLn(F ) to a subgroup of GLn(K).

Proof.

Exercise. Is it possible to prove this using the machinery outlined above? The word
‘conjugate’ will be the sticking point. �
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