	Fields Institute	
Barry Monson	Orthogonal groups	November 2011

Our main reference for all this is [1], which has aged beautifully.

Context: V is an n-dimensional vector space with basis $\{b_0, \ldots, b_{n-1}\}$ over field K of characteristic $p \neq 2$. (We allow p = 0 but forbid p = 2 here for simplicity.) V is equipped with a symmetric bilinear form $x \cdot y$. Usually V will be non-singular, meaning $\operatorname{rad}(V) = \{o\}$, equivalently disc $(V) = \det([b_i \cdot b_j]) \neq 0$. Changing the basis will multiply disc(V) by a square $t^2 \in \mathbb{K}^* := \mathbb{K} \setminus \{0\}$. Thus the discriminant is really an invariant modulo $(\mathbb{K}^*)^2$. Notation: For $u, v \in \mathbb{K}^*$ write $u \sim v$ if $u = t^2 v$ where $t \in \mathbb{K}^*$.

It is quite possible that such a V have non-zero isotropic vectors x (i.e. $x \cdot x = 0$). This is indeed always the case over finite fields $GF(q), q = p^m$, when $n \ge 3$, and also when n = 2 in one of the two possible spaces.

For any subspace $U \leq V$, let

$$U^{\perp} := \{ x \in V : x \cdot y = 0, \forall y \in U \} .$$

General Properties. Assume V non-singular, with various subspaces U, W, etc.

- 1. $\dim(U) + \dim(U^{\perp}) = n; (U^{\perp})^{\perp} = U; V^{\perp} = \{0\}.$
- 2. $\operatorname{rad}(U) = \operatorname{rad}(U^{\perp}) = U \cap U^{\perp}$. (A subspace, eg. the line spanned by an isotropic vector, can be singular even if V is not.)
- 3. V is a direct sum of mutually orthogonal lines, written $V = \langle c_0 \rangle \perp \ldots \perp \langle c_{n-1} \rangle$. (This holds in general orthogonal spaces; then V is non-singular if-f all c_j are non-isotropic.)
- 4. U is non-singular if-f U^{\perp} is non-singular. In this case, $V = U \perp U^{\perp}$. Conversely, $V = U \perp W$ implies U, W non-singular with $U^{\perp} = W$.
- 5. Suppose dim V = 2, V is non-singular, and V has an isotropic vector $p \neq o$. Then V is a sadly named 'hyperbolic plane', meaning that it has a basis $\{p,q\}$ such that $p^2 = q^2 = 0$, pq = 1.

Extending Isometries

- 1. **Theorem.** Let U be any subspace of a non-singular space V. Suppose $U = \operatorname{rad}(U) \perp W$ and $\{p_1, \ldots, p_r\}$ is a basis for $\operatorname{rad}(U)$. Then
 - (a) there exists $\{q_1, \ldots, q_r\}$ in V such that each (p_j, q_j) is a hyperbolic pair, and so that the hyperbolic planes $P_j = \langle p_j, q_j \rangle$ are mutually orthogonal (and all orthogonal to W). Thus $U \subseteq \overline{U} = P_1 \perp \ldots \perp P_r \perp W$, which is also a non-singular subspace of V.
 - (b) Suppose V and V' are isometric spaces. Then any isometry σ mapping U into V' can be extended to $\overline{\sigma}: \overline{U} \to V'$.

- 2. Theorem (Witt) Let V, V' be isometric non-singular spaces. Let σ be an isometry of a subspace U of V into V'. Then σ can be extended to an isometry $\overline{\sigma} : V \to V'$. Furthermore, it is possible to prescribe the determinant (namely, ± 1) for $\overline{\sigma}$ if–f dim U + dim rad U < n.
- 3. Some consequences. Let V be non-singular of dimension n.
 - (a) All maximal isotropic subspaces have the same dimension r (the **Witt index**).
 - (b) If U_1 and U_2 are isometric subspaces, then U_1^{\perp} and U_2^{\perp} are isometric.
 - (c) Each maximal hyperbolic subspace (= sum of 'hyperbolic planes') has dimension 2r, so $r \leq \lfloor \frac{n}{2} \rfloor$.
 - (d) A hyperbolic subspace H_{2s} is maximal if $W = H_{2s}^{\perp}$ is **anisotropic** (contains no non-trivial isotropic vector): $V = H_{2r} \perp W$. Also, the geometry of W is independent of the choice of the subspace H_{2r} .
- 4. **Theorem** (fixed hyperplanes) Suppose $\sigma \in O(V)$ fixes a hyperplane H pointwise. Then if H is singular, $\sigma = e$ (identity). But if H is non-singular, then $\sigma = e$ or σ is the reflection in H. Thus isometries are determined in a corresponding way by their effect on any hyperplane.
- 5. Theorem (Cartan-Dieudonné) Say dim V = n. Then every $\sigma \in O(V)$ is a product of at most *n* reflections (in non-singular hyperplanes).

Compare what you know in Euclidean space: note here that we consider linear isometries, which do all fix o.

Computing the order and structure of O(V). For deeper structure one really needs to study the Clifford algebra of V. But we can get some sense of more elementary properties of V by employing the above results to systematically count things like isotropic vectors and hyperbolic planes in V.

1. Suppose $\mathbb{K} = GF(q), q = p^m, p$ odd. Then the map

$$\begin{array}{rccc} \mathbb{K}^* & \to & \mathbb{K}^* \\ t & \mapsto & t^2 \end{array}$$

is a homomorphism with kernel ±1. Thus the squares $(\mathbb{K}^*)^2$ have index 2 in \mathbb{K}^* , say with coset representatives 1 and some **fixed non-square** η . Example: In \mathbb{Z}_p can take $\eta = -1$, if $p \equiv 3 \pmod{4}$.

- 2. The orthogonal group $O(V) = \{g \in GL(V) : g(x) \cdot g(y) = x \cdot y, \forall x, y, \in V\}$. Notice that O(V) is unaffected by rescaling the form (say $x * y := \alpha(x \cdot y)$ for some fixed $\alpha \in \mathbb{K}^*$). If disc $(V) \neq 0$, then det $(g) = \pm 1$ for $g \in O(V)$. The subgroup of isometries with determinant 1 is called the *special orthogonal group*, denoted SO(V).
- 3. n = 1, say $V = \langle a \rangle$. One kind of geometry: up to rescaling, $a \cdot a = 1$, with orthogonal group $O(1, q, 0) \simeq \{\pm 1\}$. The parameter $\varepsilon = 0$ in O(1, q, 0) is merely a convenient reminder that the dimension n is odd.
- 4. n = 2: There are two quite distinct geometries, distinguished by the parameter $\varepsilon = +1$ or -1.

• If $\varepsilon = +1$, V has an isotropic basis and is thus a 'hyperbolic plane' (in the sense used in geometric algebra). For some basis the Gram matrix is $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and disc(V) ~ -1 . Here O(2, q, +1) is dihedral of order 2(q-1); and $x \cdot x$ takes on all values in K. As generators we could take the reflections

$$\left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right] \text{ and } \left[\begin{array}{cc} 0 & \alpha \\ 1/\alpha & 0 \end{array}\right],$$

where α is a primitive generator for the cyclic group \mathbb{K}^* .

• If $\varepsilon = -1$, V is anisotropic (only o is isotropic). For some basis the Gram matrix is $\begin{bmatrix} 1 & 0 \\ 0 & -\eta \end{bmatrix}$, and disc(V) $\sim -\eta$. Again $x \cdot x$ takes on all values in K. But O(2, q, -1) has order 2(q+1). It is a little more involved to describe generating reflections.

5. n = 3: Again, there one kind of geometry, up to rescaling, with group O(3, q, 0). The order of this group is $2q(q^2 - 1)$. For any dimension $n \ge 3$, V contains non-zero isotropic vectors.

6. The general situation.

If n is odd, then O(n, q, 0) has order $2\varphi_n$, where

$$\varphi_n := q^{(n-1)^2/4} \prod_{j=1}^{(n-1)/2} (q^{2j} - 1) .$$

Each maximal totally isotropic subspace has dimension (n-1)/2.

If n is even, then $O(n, q, \varepsilon)$ has order $2\varphi_n$, where now

$$\varphi_n := q^{n(n-2)/4} \left(q^{n/2} - \varepsilon \right) \prod_{j=1}^{(n-2)/2} \left(q^{2j} - 1 \right).$$

When $\varepsilon = +1$, the maximal totally isotropic subspaces all have dimension n/2 and $\operatorname{disc}(V) \sim (-1)^{n/2}$. When $\varepsilon = -1$, the maximal totally isotropic subspaces have dimension (n/2) - 1; and $\operatorname{disc}(V) \sim (-1)^{n/2} \eta$.

7. Some significant subgroups.

It is known that O(V) is generated by reflections (Cartan-Dieudonné). Recall that these must look like

$$r(x) = x - 2\frac{a \cdot x}{a \cdot a}a \; .$$

The root a is non-zero but clearly can be rescaled by any $t \in \mathbb{K}^*$, without affecting r or the quadratic nature of $a \cdot a$. Put otherwise, we can assume either that $a \cdot a = 1$ or that $a \cdot a = \eta$.

One can show that $O(n, q, \varepsilon)$ has precisely two conjugacy classes of reflections, namely those for which $a \cdot a = 1$ versus those with $a \cdot a = \eta$. These generate subgroups which we denote $O_1(n, q, \varepsilon)$, respectively $O_2(n, q, \varepsilon)$.

We need to be a little cautious: these subgroups will be swapped if we rescale our form by a non-square. But keeping that in mind, we find that usually $O_j(n, q, \varepsilon)$ has index 2 in $O(n, q, \varepsilon)$, and hence has order φ_n . (The exceptions are the 'smallish groups' O(3, 3, 0)and O(4, 3, +1); see [2, Prop. 3.1] for details.)

When n is odd, the subgroups $O_1(n, q, \varepsilon)$ and $O_2(n, q, \varepsilon)$ are definitely non-isomorphic; but when n is even, the two subgroups are isomorphic.

References

- [1] E. ARTIN, Geometric Algebra, Interscience, New York, 1957.
- [2] B. MONSON AND E.SCHULTE, *Reflection groups and polytopes over finite fields- I*, Advances in Applied Mathematics, 33 (2004), pp. 290–217.