Our main reference for all this is [1], which has aged beautifully.
Context: V is an n-dimensional vector space with basis $\left\{b_{0}, \ldots, b_{n-1}\right\}$ over field \mathbb{K} of characteristic $p \neq 2$. (We allow $p=0$ but forbid $p=2$ here for simplicity.) V is equipped with a symmetric bilinear form $x \cdot y$. Usually V will be non-singular, meaning $\operatorname{rad}(V)=\{o\}$, equivalently $\operatorname{disc}(V)=\operatorname{det}\left(\left[b_{i} \cdot b_{j}\right]\right) \neq 0$. Changing the basis will multiply $\operatorname{disc}(V)$ by a square $t^{2} \in \mathbb{K}^{*}:=\mathbb{K} \backslash\{0\}$. Thus the discriminant is really an invariant modulo $\left(\mathbb{K}^{*}\right)^{2}$. Notation: For $u, v \in \mathbb{K}^{*}$ write $u \sim v$ if $u=t^{2} v$ where $t \in \mathbb{K}^{*}$.

It is quite possible that such a V have non-zero isotropic vectors x (i.e. $x \cdot x=0$). This is indeed always the case over finite fields $G F(q), q=p^{m}$, when $n \geqslant 3$, and also when $n=2$ in one of the two possible spaces.

For any subspace $U \leqslant V$, let

$$
U^{\perp}:=\{x \in V: x \cdot y=0, \forall y \in U\}
$$

General Properties. Assume V non-singular, with various subspaces U, W, etc.

1. $\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)=n ;\left(U^{\perp}\right)^{\perp}=U ; V^{\perp}=\{0\}$.
2. $\operatorname{rad}(U)=\operatorname{rad}\left(U^{\perp}\right)=U \cap U^{\perp}$. (A subspace, eg. the line spanned by an isotropic vector, can be singular even if V is not.)
3. V is a direct sum of mutually orthogonal lines, written $V=\left\langle c_{0}\right\rangle \perp \ldots \perp\left\langle c_{n-1}\right\rangle$. (This holds in general orthogonal spaces; then V is non-singular if-f all c_{j} are non-isotropic.)
4. U is non-singular if-f U^{\perp} is non-singular. In this case, $V=U \perp U^{\perp}$. Conversely, $V=U \perp W$ implies U, W non-singular with $U^{\perp}=W$.
5. Suppose $\operatorname{dim} V=2, V$ is non-singular, and V has an isotropic vector $p \neq o$. Then V is a sadly named 'hyperbolic plane', meaning that it has a basis $\{p, q\}$ such that $p^{2}=q^{2}=0, p q=1$.

Extending Isometries

1. Theorem. Let U be any subspace of a non-singular space V. Suppose $U=\operatorname{rad}(U) \perp W$ and $\left\{p_{1}, \ldots, p_{r}\right\}$ is a basis for $\operatorname{rad}(U)$. Then
(a) there exists $\left\{q_{1}, \ldots, q_{r}\right\}$ in V such that each $\left(p_{j}, q_{j}\right)$ is a hyperbolic pair, and so that the hyperbolic planes $P_{j}=\left\langle p_{j}, q_{j}\right\rangle$ are mutually orthogonal (and all orthogonal to $W)$. Thus $U \subseteq \bar{U}=P_{1} \perp \ldots \perp P_{r} \perp W$, which is also a non-singular subspace of V.
(b) Suppose V and V^{\prime} are isometric spaces. Then any isometry σ mapping U into V^{\prime} can be extended to $\bar{\sigma}: \bar{U} \rightarrow V^{\prime}$.
2. Theorem (Witt) Let V, V^{\prime} be isometric non-singular spaces. Let σ be an isometry of a subspace U of V into V^{\prime}. Then σ can be extended to an isometry $\bar{\sigma}: V \rightarrow V^{\prime}$. Furthermore, it is possible to prescribe the determinant (namely, ± 1) for $\bar{\sigma}$ if-f $\operatorname{dim} U+\operatorname{dim} \operatorname{rad} U<n$.
3. Some consequences. Let V be non-singular of dimension n.
(a) All maximal isotropic subspaces have the same dimension r (the Witt index).
(b) If U_{1} and U_{2} are isometric subspaces, then U_{1}^{\perp} and U_{2}^{\perp} are isometric.
(c) Each maximal hyperbolic subspace ($=$ sum of 'hyperbolic planes') has dimension $2 r$, so $r \leqslant\left\lfloor\frac{n}{2}\right\rfloor$.
(d) A hyperbolic subspace $H_{2 s}$ is maximal if-f $W=H_{2 s}^{\perp}$ is anisotropic (contains no non-trivial isotropic vector): $V=H_{2 r} \perp W$. Also, the geometry of W is independent of the choice of the subspace $H_{2 r}$.
4. Theorem (fixed hyperplanes) Suppose $\sigma \in O(V)$ fixes a hyperplane H pointwise. Then if H is singular, $\sigma=e$ (identity). But if H is non-singular, then $\sigma=e$ or σ is the reflection in H. Thus isometries are determined in a corresponding way by their effect on any hyperplane.
5. Theorem (Cartan-Dieudonné) Say $\operatorname{dim} V=n$. Then every $\sigma \in O(V)$ is a product of at most n reflections (in non-singular hyperplanes).
Compare what you know in Euclidean space: note here that we consider linear isometries, which do all fix o.

Computing the order and structure of $O(V)$. For deeper structure one really needs to study the Clifford algebra of V. But we can get some sense of more elementary properties of V by employing the above results to systematically count things like isotropic vectors and hyperbolic planes in V.

Orthogonal groups over finite fields.

1. Suppose $\mathbb{K}=G F(q), q=p^{m}$, p odd. Then the map

$$
\begin{aligned}
\mathbb{K}^{*} & \rightarrow \mathbb{K}^{*} \\
t & \mapsto t^{2}
\end{aligned}
$$

is a homomorphism with kernel ± 1. Thus the squares $\left(\mathbb{K}^{*}\right)^{2}$ have index 2 in \mathbb{K}^{*}, say with coset representatives 1 and some fixed non-square η.
Example: In \mathbb{Z}_{p} can take $\eta=-1$, if $p \equiv 3(\bmod 4)$.
2. The orthogonal group $O(V)=\{g \in G L(V): g(x) \cdot g(y)=x \cdot y, \forall x, y, \in V\}$. Notice that $O(V)$ is unaffected by rescaling the form (say $x * y:=\alpha(x \cdot y)$ for some fixed $\alpha \in \mathbb{K}^{*}$). If $\operatorname{disc}(V) \neq 0$, then $\operatorname{det}(g)= \pm 1$ for $g \in O(V)$. The subgroup of isometries with determinant 1 is called the special orthogonal group, denoted $S O(V)$.
3. $n=1$, say $V=\langle a\rangle$. One kind of geometry: up to rescaling, $a \cdot a=1$, with orthogonal group $O(1, q, 0) \simeq\{ \pm 1\}$. The parameter $\varepsilon=0$ in $O(1, q, 0)$ is merely a convenient reminder that the dimension n is odd.
4. $n=2$: There are two quite distinct geometries, distinguished by the parameter $\varepsilon=+1$ or -1 .

- If $\varepsilon=+1, V$ has an isotropic basis and is thus a 'hyperbolic plane' (in the sense used in geometric algebra). For some basis the Gram matrix is $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and $\operatorname{disc}(V) \sim-1$. Here $O(2, q,+1)$ is dihedral of order $2(q-1)$; and $x \cdot x$ takes on all values in \mathbb{K}. As generators we could take the reflections

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \text { and }\left[\begin{array}{rr}
0 & \alpha \\
1 / \alpha & 0
\end{array}\right],
$$

where α is a primitive generator for the cyclic group \mathbb{K}^{*}.

- If $\varepsilon=-1, V$ is anisotropic (only o is isotropic). For some basis the Gram matrix is $\left[\begin{array}{rr}1 & 0 \\ 0 & -\eta\end{array}\right]$, and $\operatorname{disc}(V) \sim-\eta$. Again $x \cdot x$ takes on all values in \mathbb{K}. But $O(2, q,-1)$ has order $2(q+1)$. It is a little more involved to describe generating reflections.

5. $n=3$: Again, there one kind of geometry, up to rescaling, with group $O(3, q, 0)$. The order of this group is $2 q\left(q^{2}-1\right)$. For any dimension $n \geqslant 3, V$ contains non-zero isotropic vectors.

6. The general situation.

If n is odd, then $O(n, q, 0)$ has order $2 \varphi_{n}$, where

$$
\varphi_{n}:=q^{(n-1)^{2} / 4} \prod_{j=1}^{(n-1) / 2}\left(q^{2 j}-1\right)
$$

Each maximal totally isotropic subspace has dimension $(n-1) / 2$.
If n is even, then $O(n, q, \varepsilon)$ has order $2 \varphi_{n}$, where now

$$
\varphi_{n}:=q^{n(n-2) / 4}\left(q^{n / 2}-\varepsilon\right) \prod_{j=1}^{(n-2) / 2}\left(q^{2 j}-1\right)
$$

When $\varepsilon=+1$, the maximal totally isotropic subspaces all have dimension $n / 2$ and $\operatorname{disc}(V) \sim(-1)^{n / 2}$. When $\varepsilon=-1$, the maximal totally isotropic subspaces have dimension $(n / 2)-1$; and $\operatorname{disc}(V) \sim(-1)^{n / 2} \eta$.

7. Some significant subgroups.

It is known that $O(V)$ is generated by reflections (Cartan-Dieudonné). Recall that these must look like

$$
r(x)=x-2 \frac{a \cdot x}{a \cdot a} a .
$$

The root a is non-zero but clearly can be rescaled by any $t \in \mathbb{K}^{*}$, without affecting r or the quadratic nature of $a \cdot a$. Put otherwise, we can assume either that $a \cdot a=1$ or that $a \cdot a=\eta$.
One can show that $O(n, q, \varepsilon)$ has precisely two conjugacy classes of reflections, namely those for which $a \cdot a=1$ versus those with $a \cdot a=\eta$. These generate subgroups which we denote $O_{1}(n, q, \varepsilon)$, respectively $O_{2}(n, q, \varepsilon)$.
We need to be a little cautious: these subgroups will be swapped if we rescale our form by a non-square. But keeping that in mind, we find that usually $O_{j}(n, q, \varepsilon)$ has index 2 in $O(n, q, \varepsilon)$, and hence has order φ_{n}. (The exceptions are the 'smallish groups' $O(3,3,0)$ and $O(4,3,+1)$; see [2, Prop. 3.1] for details.)
When n is odd, the subgroups $O_{1}(n, q, \varepsilon)$ and $O_{2}(n, q, \varepsilon)$ are definitely non-isomorphic; but when n is even, the two subgroups are isomorphic.

References

[1] E. Artin, Geometric Algebra, Interscience, New York, 1957.
[2] B. Monson and E.Schulte, Reflection groups and polytopes over finite fields- I, Advances in Applied Mathematics, 33 (2004), pp. 290-217.

