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Our main reference for all this is [1], which has aged beautifully.

Context: V is an n-dimensional vector space with basis {b0, . . . , bn−1} over field K of charac-
teristic p 6= 2. (We allow p = 0 but forbid p = 2 here for simplicity.) V is equipped with a
symmetric bilinear form x · y. Usually V will be non-singular, meaning rad(V ) = {o}, equiv-
alently disc(V ) = det([bi · bj]) 6= 0. Changing the basis will multiply disc(V ) by a square
t2 ∈ K∗ := K \ {0}. Thus the discriminant is really an invariant modulo (K∗)2.
Notation: For u, v ∈ K∗ write u ∼ v if u = t2v where t ∈ K∗.

It is quite possible that such a V have non-zero isotropic vectors x (i.e. x · x = 0). This is
indeed always the case over finite fields GF (q), q = pm, when n > 3, and also when n = 2 in
one of the two possible spaces.

For any subspace U 6 V , let

U⊥ := {x ∈ V : x · y = 0, ∀y ∈ U} .

General Properties. Assume V non-singular, with various subspaces U,W , etc.

1. dim(U) + dim(U⊥) = n; (U⊥)⊥ = U ; V ⊥ = {0}.

2. rad(U) = rad(U⊥) = U ∩ U⊥. (A subspace, eg. the line spanned by an isotropic vector,
can be singular even if V is not.)

3. V is a direct sum of mutually orthogonal lines, written V = 〈c0〉⊥ . . .⊥〈cn−1〉. (This
holds in general orthogonal spaces; then V is non-singular if-f all cj are non-isotropic.)

4. U is non-singular if-f U⊥ is non-singular. In this case, V = U⊥U⊥. Conversely, V = U⊥W
implies U,W non-singular with U⊥ = W .

5. Suppose dimV = 2, V is non-singular, and V has an isotropic vector p 6= o. Then V is a
sadly named ‘hyperbolic plane’, meaning that it has a basis {p, q} such that
p2 = q2 = 0, pq = 1.

Extending Isometries

1. Theorem. Let U be any subspace of a non-singular space V . Suppose U = rad(U)⊥W
and {p1, . . . , pr} is a basis for rad(U). Then

(a) there exists {q1, . . . , qr} in V such that each (pj, qj) is a hyperbolic pair, and so that
the hyperbolic planes Pj = 〈pj, qj〉 are mutually orthogonal (and all orthogonal to
W ). Thus U ⊆ U = P1⊥ . . .⊥Pr⊥W , which is also a non-singular subspace of V .

(b) Suppose V and V ′ are isometric spaces. Then any isometry σ mapping U into V ′

can be extended to σ : U → V ′.
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2. Theorem (Witt) Let V, V ′ be isometric non-singular spaces. Let σ be an isometry of
a subspace U of V into V ′. Then σ can be extended to an isometry σ : V → V ′.
Furthermore, it is possible to prescribe the determinant (namely, ±1) for σ if–f
dimU + dim rad U < n.

3. Some consequences. Let V be non-singular of dimension n.

(a) All maximal isotropic subspaces have the same dimension r (the Witt index).

(b) If U1 and U2 are isometric subspaces, then U⊥
1 and U⊥

2 are isometric.

(c) Each maximal hyperbolic subspace ( = sum of ‘hyperbolic planes’) has dimension
2r, so r 6 bn

2
c.

(d) A hyperbolic subspace H2s is maximal if-f W = H⊥
2s is anisotropic (contains no

non-trivial isotropic vector): V = H2r⊥W. Also, the geometry of W is independent
of the choice of the subspace H2r.

4. Theorem (fixed hyperplanes) Suppose σ ∈ O(V ) fixes a hyperplane H pointwise. Then
if H is singular, σ = e (identity). But if H is non-singular, then σ = e or σ is the
reflection in H. Thus isometries are determined in a corresponding way by their effect on
any hyperplane.

5. Theorem (Cartan-Dieudonné) Say dimV = n. Then every σ ∈ O(V ) is a product of at
most n reflections (in non-singular hyperplanes).

Compare what you know in Euclidean space: note here that we consider linear isometries,
which do all fix o.

Computing the order and structure of O(V ). For deeper structure one really needs to
study the Clifford algebra of V . But we can get some sense of more elementary properties
of V by employing the above results to systematically count things like isotropic vectors and
hyperbolic planes in V .
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Orthogonal groups over finite fields.

1. Suppose K = GF (q), q = pm, p odd. Then the map

K∗ → K∗

t 7→ t2

is a homomorphism with kernel ±1. Thus the squares (K∗)2 have index 2 in K∗, say with
coset representatives 1 and some fixed non-square η.
Example: In Zp can take η = −1, if p ≡ 3 (mod 4).

2. The orthogonal group O(V ) = {g ∈ GL(V ) : g(x) · g(y) = x · y, ∀x, y,∈ V }. Notice that
O(V ) is unaffected by rescaling the form (say x ∗ y := α(x · y) for some fixed α ∈ K∗).
If disc(V ) 6= 0, then det(g) = ±1 for g ∈ O(V ). The subgroup of isometries with
determinant 1 is called the special orthogonal group, denoted SO(V ).

3. n = 1, say V = 〈a〉. One kind of geometry: up to rescaling, a · a = 1, with orthogonal
group O(1, q, 0) ' {±1}. The parameter ε = 0 in O(1, q, 0) is merely a convenient
reminder that the dimension n is odd.

4. n = 2: There are two quite distinct geometries, distinguished by the parameter ε = +1
or −1.

• If ε = +1, V has an isotropic basis and is thus a ‘hyperbolic plane’ (in the sense used in

geometric algebra). For some basis the Gram matrix is

[
0 1
1 0

]
and disc(V ) ∼ −1. Here

O(2, q,+1) is dihedral of order 2(q− 1); and x · x takes on all values in K. As generators
we could take the reflections [

0 1
1 0

]
and

[
0 α

1/α 0

]
,

where α is a primitive generator for the cyclic group K∗.

• If ε = −1, V is anisotropic (only o is isotropic). For some basis the Gram matrix is[
1 0
0 −η

]
, and disc(V ) ∼ −η. Again x · x takes on all values in K. But O(2, q,−1) has

order 2(q + 1). It is a little more involved to describe generating reflections.

5. n = 3: Again, there one kind of geometry, up to rescaling, with group O(3, q, 0). The
order of this group is 2q(q2 − 1). For any dimension n > 3, V contains non-zero isotropic
vectors.
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6. The general situation.

If n is odd, then O(n, q, 0) has order 2ϕn, where

ϕn := q(n−1)2/4

(n−1)/2∏
j=1

(q2j − 1) .

Each maximal totally isotropic subspace has dimension (n− 1)/2.

If n is even, then O(n, q, ε) has order 2ϕn, where now

ϕn := qn(n−2)/4 (qn/2 − ε)

(n−2)/2∏
j=1

(q2j − 1) .

When ε = +1, the maximal totally isotropic subspaces all have dimension n/2 and
disc(V ) ∼ (−1)n/2. When ε = −1, the maximal totally isotropic subspaces have di-
mension (n/2)− 1; and disc(V ) ∼ (−1)n/2η.

7. Some significant subgroups.

It is known that O(V ) is generated by reflections (Cartan-Dieudonné). Recall that these
must look like

r(x) = x− 2
a · x
a · a

a .

The root a is non-zero but clearly can be rescaled by any t ∈ K∗, without affecting r or
the quadratic nature of a · a. Put otherwise, we can assume either that a · a = 1 or that
a · a = η.

One can show that O(n, q, ε) has precisely two conjugacy classes of reflections, namely
those for which a · a = 1 versus those with a · a = η. These generate subgroups which we
denote O1(n, q, ε), respectively O2(n, q, ε).

We need to be a little cautious: these subgroups will be swapped if we rescale our form
by a non-square. But keeping that in mind, we find that usually Oj(n, q, ε) has index 2
in O(n, q, ε), and hence has order ϕn. (The exceptions are the ‘smallish groups’ O(3, 3, 0)
and O(4, 3,+1); see [2, Prop. 3.1] for details.)

When n is odd, the subgroups O1(n, q, ε) and O2(n, q, ε) are definitely non-isomorphic;
but when n is even, the two subgroups are isomorphic.
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