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1 Abstract Regular Polytopes

An (abstract) n-polytope P is a partially ordered set with a strictly mono-
tone rank function having range {−1, 0, . . . , n}. An element F ∈ P with
rank(F ) = j is called a j-face; and faces of ranks 0, 1 and n − 1 are called
vertices, edges and facets, respectively. We also require that P have two
improper faces: a unique least face F−1 and a unique greatest face Fn. Fur-
thermore, each maximal chain or flag in P must contain n + 2 faces, and
P should be strongly flag–connected. Finally, P must have a homogeneity
property: whenever F < G with rank(F ) = j− 1 and rank(G) = j+ 1, there
are exactly two j-faces H with F < H < G.

The symmetry of P is, of course, exhibited by its automorphism group
Γ(P). In particular, P is regular if Γ(P) is transitive on flags, as will usually
be the case here. Now fix a base flag Φ = {F−1, F0, . . . , Fn−1, Fn}, with
rank (Fj) = j. For 0 6 j 6 n−1, there is a unique flag jΦ differing from Φ in
just the rank j face; let ρj be the (unique) automorphism with ρj(Φ) = jΦ. In
this case, Γ(P) is generated by the involutions ρ0, ρ1, . . . , ρn−1, which satisfy
at least the relations

(ρiρj)
pij = 1, 0 6 i, j 6 n− 1, (1)

where pii = 1 and 2 6 pij = pji 6 ∞ for all i 6= j, and with the additonal
restriction that

pij = 2 for |i− j| > 2. (2)

Finally, an intersection condition on standard subgroups holds:

〈ρi | i ∈ I〉 ∩ 〈ρi | i ∈ J〉 = 〈ρi | i ∈ I ∩ J〉 (3)

for all I, J ⊆ {0, . . . , n − 1}. In short, Γ(P) is a very particular quotient
of a Coxeter group with string diagram. Conversely, given any group Γ =
〈ρ0, . . . , ρn−1〉 generated by involutions and satisfying (1), (2) and (3), one
may construct a polytope P with Γ(P) = Γ (see [27, Theorem 2E11]). We
shall say that Γ(P) is a string C-group. The details of this construction
identify P as a particular kind of thin diagram geometry (see [5, pp. 1165,
1187]).

A Coxeter group with any sort of diagram satisfies condition (3) [21, Th.
5.5(c)]. Thus, if a Coxeter group Γ has a string diagram, it certainly is a
string C-group, although Γ and the corresponding polytope P may well be
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infinite. In particular, the automorphism group of the regular polygon {q},
q ∈ {2, 3, . . . ,∞}, is the dihedral group of order 2q.

Typically in the investigation of an interesting class of groups, the rela-
tions (1) and (2) are easily verified, whereas the intersection condition does
not obviously hold. Thus, the following sufficient conditions are very helpful.

Proposition 1.1. Suppose Γ = 〈ρ0, ρ1, . . . , ρn−1〉 is a group generated by
specified involutions satisfying relations (1) and (2), and suppose that the
subgroup Γn−1 := 〈ρ0, . . . , ρn−2〉 is a string C-group (with respect to the spec-
ified generators).

(a) If Γ0 := 〈ρ1, . . . , ρn−1〉 is also a string C-group, and

Γ0 ∩ Γn−1 = 〈ρ1, . . . , ρn−2〉 ,

then Γ is a string C-group.
(b) If Γn−1 ∩ 〈ρk, . . . , ρn−1〉 = 〈ρk, . . . , ρn−2〉 for each k = 1, . . . , n − 1,

then Γ is a string C-group.
(c) If Γ0 is also a string C-groups, ρn−1 6∈ Γn−1, and the subgroup 〈ρ1, . . . , ρn−2〉

is maximal in Γ0, then Γ is a string C-group.

Proof: [27, Prop. 2E16 and Lemma 11A10]. �
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2 Reflection Groups and Coxeter Groups

In order to sensibly discuss a detailed classification of finite irreducible reflec-
tion groups, we must first establish some terminology and describe several im-
portant classes of groups. Henceforth, V will denote a finite-dimensional vec-
tor space over a field K of characteristic p 6= 2; V̌ is its dual, and e ∈ GL(V ) is
the identity mapping on V . For any subgroupG ⊆ GL(V ), we may define two
G-invariant subspaces: the fixed space V G := {x ∈ V | g(x) = x, ∀g ∈ G},
and the direction space VG, spanned by {x−g(x) | g ∈ G, x ∈ V }. Similarly,
V g, Vg will denote the analogous subspaces for a particular element g ∈ G.

Usually below, G will be a subgroup of O(V ), the group of all isometries
for some symmetric bilinear form x · y on V . Recall that x · y has radical
(subspace)

radV := {x ∈ V | x · y = 0, ∀y ∈ V } .
The orthogonal space V is non-singular if radV = {o}.

A mapping r ∈ GL(V ) is said to be one-dimensional (or a pseudo-
reflection) if rank(r − e) = 1. In other words, there should exist a vector
a ∈ V , and a linear map ϕ ∈ V̌ , both non-zero, so that

r(x) = x+ ϕ(x)a, ∀x ∈ V. (4)

Since det(r) = 1 + ϕ(a), we have ϕ(a) 6= −1. Note that V r = kerϕ has
codimension 1, and Vr = Ka. Thus Vr ⊆ V r if and only if ϕ(a) = 0, in which
case r is a transvection, having period p, if p > 2, or period ∞, when p = 0.
Otherwise, V = V r⊕Vr, and r acts as the scalar 1+ϕ(a) on Vr. Since p 6= 2,
we conclude that r is involutory if and only if ϕ(a) = −2. Because r then
acts as −1 on Vr , we call r a reflection. In this case, we say that a is a root
for r. (More precisely, we could say that r is a linear involutory hyperplane
reflection. Pseudo-reflections of period q > 2, such as occur in some of the
unitary groups described in [14] or [8], will not concern us here.)

Let us extend the notation by setting rϕ,a(x) = x+ϕ(x)a, allowing r0,a =
rϕ,0 = e. We record some useful and easily verified properties of these general
one-dimensional mappings.

Lemma 2.1. (a) rϕ,ta = rtϕ,a, ∀t ∈ K.
(b) grϕ,ag

−1 = rϕ◦g−1, g(a) , ∀g ∈ GL(V ).
(c) r−1ϕ,a = rϕ, ta, where t = −(1 + ϕ(a))−1.
(d) Suppose rϕ,a 6= e 6= rψ,b, where a, b are independent; then rϕ,a and

rψ,b commute if and only if ϕ(b) = 0 = ψ(a).
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(e) Suppose rϕ,a is a one-dimensional isometry for the non-singular or-
thogonal space (V, ·). Then rϕ,a must be an orthogonal reflection, the root a
must be non-isotropic and

rϕ,a(x) = x− 2
x · a
a · a

a, ∀x ∈ V. (5)

We often write ra := rϕ,a in this case.
(f) If rϕ,a, rψ,b are reflections, and ϕ(b) = 0 6= ψ(a), then the commutator

[rϕ,a, rψ,b] = (rϕ,arψ,b)
2

is a non-trivial transvection.
(g) The product of two reflections with the same direction space (resp.

fixed space) is a transvection with this direction space (resp. fixed space).
The product, in any order, of a reflection and a transvection with the same
direction space (resp. fixed space) is a reflection with this direction space
(resp. fixed space).

(h) A subspace U ⊆ V is invariant under the reflection rϕ,a if and only
if U ⊆ kerϕ or Ka ⊆ U (i.e. a ∈ U). Similarly, f ∈ GL(V ) commutes with
rϕ,a if and only if kerϕ and Ka are f -invariant.

(i) For transvections, one has

rϕ,arψ,a = rϕ+ψ,a and rϕ,arϕ,b = rϕ,a+b.

(Thus the transvections with common fixed space kerϕ constitute an abelian
subgroup of GL(V ) isomorphic to (kerϕ,+).)

Proof. Part (f) appears in [38, Lemma 3.1], and part (h) in [3, chap.v,
§2, prop.3]. �

In fact, we shall mainly be concerned with subgroups G ⊆ GL(V ) gener-
ated by reflections, typically

G = 〈rj | j ∈ J〉,

for some finite index set J . Thus, we have rj(x) = x+ϕj(x)aj, with ϕj(aj) =
−2 for j ∈ J . Note then that

V G =
⋂
j∈J

kerϕj, VG = span{aj | j ∈ J}.

We shall say that the reflection group G, with the specified generators rj,
is balanced if ϕj(ak) = 0 implies ϕk(aj) = 0 for j, k ∈ J . For example,
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if G contains no transvections, then G must be balanced, in this sense, by
Lemma 2.1(f). In particular, by Lemma 2.1(e), this is the case if G is a group
of isometries for some non-singular orthogonal space V .

For a balanced reflection group we may define a graph ∆(G), with vertex
set J , such that distinct j, k ∈ J are adjacent whenever ϕj(ak) 6= 0. To avoid
confusion with the faces of polytopes, we speak of the nodes and branches
of the diagram ∆(G). We shall soon see that Coxeter diagrams arise in this
way, and numerous modifications of these can be seen below; but for now we
attach no labels to the nodes or branches of ∆(G).

The matrix N := [ϕi(aj)] (indexed by i, j ∈ J) is called a Cartan matrix
for G (with respect to the specified generating reflections). Since ϕj(aj) =
t−1j ϕj(tjaj), for any tj ∈ K∗, N is not uniquely specified by the generators,
but rather is determined only up to similarity by a diagonal matrix T with
entries tj. (See [25, §1] for implications in the real case.)

Lemma 2.2. Let ∆(G) be the diagram for the balanced reflection group G =
〈rj | j ∈ J〉 with Cartan matrix N .

(a) Suppose the aj are independent. Then G acts irreducibly on VG if
and only if det(N) 6= 0 and ∆(G) is connected.

(b) If ∆(G) is disconnected, say with nodes i1, . . . , ir comprising one
component, then G leaves invariant the proper subspace U := span(ai1 , . . . , air).

(c) Let U be a G–invariant subspace of V . If some aj ∈ U , then all
ai ∈ U , for i in the connected component of j in ∆(G).

(d) Let U be a G–invariant subspace of V . If aj 6∈ U , then ϕj annihi-
lates U .

(e) If ∆(G) is connected, then every G-invariant subspace of V is either
contained in V G or contains VG.

(f) If det(N) 6= 0, then VG ∩ V G = {o}.

Proof. See [21, §6.1,6.3]; the key ideas in the real case generalize easily.
Here are some details.
Part(b): See (4). Since ai1 6= o, U 6= {o}; and if node j is not in the
component, ϕj annihilates U ; but ϕj 6= o, so U 6= V .

6



Part(c): Let node i be adjacent to node j in ∆(G), so ϕi(aj) 6= 0 in ri(aj) =
aj + ϕi(aj)ai. Thus

ai = [ϕi(aj)]
−1(ri(aj)− aj) ∈ U .

Part(d): For all x ∈ U we have

rj(x)− x = ϕj(x)aj ,

so that ϕj(x) = 0 because aj 6∈ U .
Part(e) follows from (c) and (d). Parts (f) and (a) also follow easily. �

Remark. Usually below {aj} is a basis for V , so that VG = V .
An important class of balanced reflection groups is provided by the ‘stan-

dard’ real representation of a Coxeter group Γ = 〈ρ0, . . . , ρn−1〉 with presen-
tation (1). On an n-dimensional real vector space V , with basis a0, . . . , an−1,
we define a symmetric bilinear form x · y by setting

ai · aj := −2 cos
π

pij
, 0 6 i, j 6 n− 1, (6)

where pij is the period of ρiρj indicated in (1). Note that each a2j := aj ·aj = 2
and that rj(x) = x − (x · aj)aj describes an isometric reflection on V . It is
well known that the mapping ρj 7→ rj induces a faithful representation

R : Γ→ G := 〈r0, . . . , rn−1〉 (7)

of Γ in the orthogonal group O(V ) for the form x · y [21, §5.3-5.4]. Accord-
ingly, we may put Γ aside and work instead with the linear Coxeter group G.
(See [24, 25, 4] or [37] for further properties of more general linear Coxeter
groups.)

From our earlier remarks, we observe that G is balanced and therefore has
a diagram ∆(G), from which we obtain the familiar Coxeter diagram ∆c(G)
for G (and for Γ) as follows: whenever pij > 3 label the branch connecting
nodes i, j by pij. (If pij = 2, nodes i, j are non-adjacent. The very common
label 3 is often suppressed. See Table 1 for the appearance of diagrams when
this is not done.)

Now let
m = 2 lcm{pij | pij <∞, 0 6 i, j 6 n− 1} ,

and suppose ξ is a primitive m-th root of unity. It is easily seen that with
respect to the basis {ai}, the reflections rj are represented by matrices in
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GLn(D), where D = Z[ξ]. (By [6, Th. 21.13], D is the ring of integers in the
algebraic number field Q(ξ); and D has (finite) rank φ(m) as a Z-module.)
Since we may view G as a subgroup of GLn(D), it is possible to reduce G
mod p, for any prime p, here allowing p = 2 [6, ch. XII]. Briefly, first suppose
that pD ⊆ M ⊂ D, for some maximal ideal M. Then K := D/M is a finite
field of characteristic p, and reduction mod p of G is achieved by applying
the natural epimorphism D → K to the entries of g ∈ G ⊆ GLn(D). This
defines a representation κ : G → GLn(K). We let Gp := κ(G) denote the
image group. (This construction is essentially independent of the choice of
M.)

It is easy to prove that κ is faithful when |G| is finite, but p - |G|. In any
case, kerκ is a p-subgroup of G. In fact, for the finite reflection groups G
considered below, κ is usually faithful even when p divides |G|.

Recall that the linear Coxeter group G is finite precisely when x · y is
positive definite ([21, Th. 6.4]). Each such G is therefore an orthogonal
group generated by reflections. If G is irreducible, it is thus one of the well
known finite Coxeter groups of type An (n > 1), Bn (n > 2), Dn (n > 4),
En (n = 6, 7, 8), F4, H3, H4, or I2(q) (dihedral of order 2q). (It is convenient
here to indicate the actual linear groups in this way. In the literature, An,
for example, often refers to the corresponding diagram or root system.)

Clearly, a finite Coxeter group G will leave invariant the unit sphere Sn−1
in V ; in such cases, G (or Γ) is said to be of spherical type. Likewise, when
x · y is positive semidefinite, with dim(radV ) = 1, the infinite Coxeter group
G is of Euclidean type and acts naturally on Euclidean (n − 1)-space En−1
[21, ch. 4]. We shall also encounter several examples in which x · y is non-
singular with signature (+ + . . .+−), so that G is of hyperbolic type and acts
on hyperbolic (n− 1)-space Hn−1 [21, §6.8-6.9].

The diagrams for the finite (irreducible) Coxeter groups are displayed in
Table 1, with a few remarks following.
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∆c(G) G |G|
•

q
• I2(q), q > 2 2q

(dihedral)
•

3
•

3
• · · · •

3
• An ' Sn+1 (n+ 1)!

(n > 1 nodes)
•

4
•

3
• · · · •

3
• Bn ' Bn(2) 2n · n!

(n > 2 nodes)

•
3
•

3

3

•
3 3

•
3
•

•

Dn ' Dn(2) 2n−1 · n!

(n > 2 nodes)
•

5
•

3
• H3 ' A5 × C2 120

(icosahedral)
•

3
•

4
•

3
• F4 1152

•
5
•

3
•

3
• H4 14400 = 1202

•
3
•

3
•

3

3

•
3
•

•

E6 51840 = 72 · 6!

•
3
•

3
•

3

3

•
3
•

3
•

•

E7 2903040 = 8 · 72 · 7!

•
3
•

3
•

3

3

•
3
•

3
•

3
•

•

E8 696729600 = 240 · 72 · 8!

Table 1: Coxeter Diagrams ∆c(G) for Irreducible Finite Coxeter Groups G.
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Remarks.

1. A1 ' C2; A2 ' I2(3); A3 ' D3 is the tetrahedral reflection group [3, 3].

2. B2 ' I2(4); B3 is the octahedral reflection group [4, 3].

3. Dn has index 2 in Bn; D2 ' C2 × C2.

4. H3 is the icosahedral reflection group [5, 3]; we might say H2 = I2(5).

Also pertinent to our discussion are the finite unitary groups generated by
reflections, first completely enumerated by Shephard and Todd ([35]). We
need to consider just the irreducible cases generated by involutory reflections
in unitary space of dimension n > 3. (We do not require a detailed description
of the case n = 2, which is a little more involved; see [8], [11] or [14]).

First of all, there are two classes of imprimitive groups. The group
Dn(m) = G(m,m, n), where m > 2, has order mn−1n! and generalizes the
Coxeter group of type Dn, which is actually isomorphic to Dn(2). The cor-
responding root diagram

•
−1/2

@@
@@

@@
@

•
−1/2

•
−1/2 −1/2

•
−1/2

•

•
−1/2

~~~~~~~

1+χm
2

OO (8)

is a variant of the Coxeter diagram and encodes the details of the essentially
unique Hermitian form left invariant by G = G(m,m, n) (see [8]). Here χm
is a primitive mth root of unity.

The other type of imprimitive group isBn(m) = G(m, m
2
, n), for even inte-

gers m > 2. This generalization of the Coxeter group Bn has order 2mn−1n!.
To generate Bn(m) we usually require n+ 1 reflections, say r0, . . . , rn−1 cor-
responding to the n nodes in (8), together with another reflection r−, whose
node is attached in (8) as follows:

•
−1/2

@@
@@

@@
@

•

−1/
√
2 @@

@@
@@

@

−1/
√
2 ~~~~~~~

•

•
−1/2

~~~~~~~

1+χm
2

OO (9)
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However, when m = 2, the generator r0 becomes superfluous and we do get
Bn ' Bn(2).

Finally we look at the primitive groups J3(4), J3(5), N4, EN4, K5 and
K6, whose root diagrams appear in Table 2. In the notation of [11] and [27,
§9A], we have J3(4) = [1 1 14]4, J3(5) = [1 1 15]4, N4 = [1 1 2]4, K5 = [2 1 2]3

and K6 = [2 1 3]3; these groups require n generating reflections, whereas EN4

requires n+ 1(= 5).
Note that the Coxeter groups indicated in Table 1 can be viewed as

unitary groups with a real form.

∆c(G) G |G|
•

−1/2
@@

@@
@@

@

•

−1/2 ~~~~~~~ α/2 // •

J3(4) ' [1114]4 336

where α2 − α + 2 = 0

•
−1/2

@@
@@

@@
@

•

−1/2 ~~~~~~~

−ωτ/2
// •

J3(5) ' [1114]5 2160

where ω = (−1 + ı
√

3)/2, τ = (1 +
√

5)/2

•
−1/2

@@
@@

@@
@

•

−1/2 ~~~~~~~

(1−ı)/2
// • −1/2 •

N4 ' [112]4 64 · 5!

•
−1/2

@@
@@

@@
@

• −1/2 •

−1/2 ~~~~~~~

−ω/2
// • −1/2 •

K5 ' [212]3 72 · 6!

•
−1/2

@@
@@

@@
@

• −1/2 • −1/2 •

−1/2 ~~~~~~~

−ω/2
// • −1/2 •

K6 ' [213]3 108 · 9!

Table 2: Arjeh Cohen’s Root Diagrams for the Remaining Irreducible,
Primitive Unitary Groups Generated by Reflections of Period 2.
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3 Orthogonal Geometries and Their Groups

Another important source of irreducible groups generated by reflections is
the full orthogonal group O(V ) for some non-singular symmetric bilinear
form x · y on V ([1, Th. 3.20]). The discriminant of this orthogonal space
is disc(V ) := det[ai · aj], where {ai} is some basis for V . Thus the image
of disc(V ) in K∗/(K∗)2 is a true invariant, and we write disc(V ) ∼ t if
disc(V ) ∈ t(K∗)2.

For the rest of this section we suppose that V has dimension n > 1 over
K = GF (q), where q = pe, p > 3. Thus, K∗/(K∗)2 ' C2 is cyclic of order
2. Let γ ∈ K∗ be a fixed non-square. In any dimension, there are, up to
similarity in GL(V ), just two distinct possibilities for the symmetric bilinear
form x · y. These may be distinguished by n and disc(V ) ([1, III.6]).

When n is odd, one of these forms is merely γ times the other, so that
the two groups are the same (up to similarity). Thus, the notation O(n, q, 0)
for O(V ) unambiguously describes the group. The possible discriminants are
(−1)(n−1)/2 and (−1)(n−1)/2 γ mod (K∗)2.

When n is even, the full orthogonal groups O(n, q, ε) for the two distinct
geometries are now distinguished by the parameter ε = ±1. For ε = 1,
the Witt index is n/2, disc(V ) ∼ (−1)n/2, and V is the orthogonal sum of
n/2 hyperbolic planes. For ε = −1, the Witt index is (n/2) − 1, disc(V ) ∼
(−1)n/2γ, and one of the n/2 hyperbolic planes is replaced by an anisotropic
plane.

We also require the spinor norm on O(V ), i.e. the homomorphism

θ : O(V ) → K∗/(K∗)2

g 7−→ a21 . . . a
2
m(K∗)2

which is well-defined on any factorization of g = ra1 . . . ram as the product of
isometric reflections with roots a1, . . . , am ∈ V ([1, V.5]). Note that we may
assume each a2j ∈ {1, γ}. Next define another homomorphism

η : O(V ) → {±1} ×
(
K∗/(K∗)2

)
' C2 × C2

g 7−→ (det g, θ(g)).

By [1, Ths. 5.14, 5.17], ker η = Ω(V ), the commutator subgroup of O(V ). We
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must consider three other normal subgroups of O(V ):

SO(V ) := 〈 g ∈ O(V ) | det g = 1 〉
O1(V ) := 〈 ra | a2 = 1 〉
O2(V ) := 〈 ra | a2 = γ 〉 .

In fact, O1(V ), O2(V ) are the subgroups generated by the two distinct con-
jugacy classes of reflections in O(V ).

Proposition 3.1. Let O(V ) be the full orthogonal group for the non-singular
space V of dimension n > 3, excluding the cases O(3, 3, 0) and O(4, 3,+1).
Then Ω(V ) = O1(V ) ∩ O2(V ); and O1(V ), O2(V ), SO(V ) correspond under
the epimorphism η to the subgroups of C2 × C2 generated by (−1, (K∗)2),
(−1, γ(K∗)2) and (1, γ(K∗)2), respectively.

Proof. Since Ω(V ) is generated by all commutators [ra, rb] = (rarb)
2 of

reflections, it suffices to show that all (rarb)
2 ∈ Oj(V ) [1, p. 134]. But V is

non-singular, so that a, b lie in a non-singular subspace W of dimension 3.
(Use [1, Th. 3.8] to verify this when a, b themselves span a singular plane.)
Now since W is clearly invariant under ra and rb, we may assume without
loss of generality that dimV = 3. Because V must contain isotropic vectors,
it follows from [1, Th. 5.20] that Ω(V ) ' PSL2(q), which is simple when
q > 3. But Oj(V ) ∩Ω(V ) C Ω(V ). If the intersection were trivial, we would
have rmrn = rnrm for all roots m,n in one norm class. This is false for
q > 3. Consequently, Oj(V )∩Ω(V ) = Ω(V ), so that Ω(V ) ⊆ O1(V )∩O2(V ).
Likewise, even if q = 3, we can similarly appeal to [1, Th. 5.21], so long
as a, b always lie in a subspace W with dim(W ) = 4, disc(W ) ∼ γ (i.e.
with Witt index 1). Again using [1, Th. 3.8], we find that this is the case
whenever n > 5. Once more not all rm, rn commute, because W contains an
anisotropic plane with non-abelian orthogonal group. Since Ω(V ) has index
2 in SO(V ) [1, Th. 5.18], the rest of the theorem follows at once. Note that
C2 × C2 has three subgroups of index 2. �
Remarks. Actually, the proposition also holds when n = 2, by explicit
calculation. The excluded cases for n = 3, 4 are genuine exceptions; see the
remarks after Theorem 4.1.

Naturally, we denote the corresponding subgroups ofO(n, q, ε) byOj(n, q, ε),
again with ε = 0 when n is odd. For odd n > 3, the groups O1(n, q, 0) and
O2(n, q, 0) are definitely non-isomorphic, since only one has non-trivial cen-
tre. To see this, note that the central isometry −e must lie in exactly one of
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these two groups by Proposition 3.1. In fact, since −e is the product of any
n reflections with mutually orthogonal roots, we have θ(−e) = disc(V )(K∗)2.
Consequently, −e ∈ O1(n, q, 0) if and only if disc(V ) ∼ 1. Indeed, this condi-
tion almost always characterizes the cases in which O1(n, q, 0) has non-trivial
centre. For suppose that z is a central isometry in Oj(V ), and consider the
action of z on M := {m ∈ V | m ·m = µ}, where µ = 1, γ for j = 1, 2 respec-
tively. Since rz(m) = zrmz

−1 = rm, we have z(m) = εmm where εm ∈ {1,−1},
for all m ∈M . If m1,m2 ∈M are independent, they span a plane containing
at least one m3 ∈M such that m1,m2,m3 are pairwise independent. (As in
the proof of Proposition 3.1, we must again assume here that q > 3 when
n = 3.) Since at least two of m1 ·m2, m1 ·m3, m2 ·m3 are non-zero, we have
εm1 = εm2 = εm3 . Since M spans V , we conclude that z = ±e. Thus for
odd n > 3, O1(V ) and O2(V ) are non-isomorphic. (For Oj(3, 3, 0), see the
remarks after Theorem 4.1.)

For even n > 2 it is possible to show in all cases that O1(n, q, ε) and
O2(n, q, ε) are isomorphic, in fact conjugate in GL(V ). Therefore, we shall
usually need to consider just one of the two groups, typically O1(n, q, ε).
(The key here is to investigate what happens when n = 2. It is also useful
to note that O(2, q, ε) is dihedral.)

The notations O(n, q, ε) and Oj(n, q, ε), where ε ∈ {0,+1,−1} and ε = 0
if and only if n is odd, are precise enough to cover all groups of ‘orthogonal
type’ considered here.
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4 The Finite Irreducible Reflection Groups

We are now able to describe the classification of the finite, irreducible re-
flection groups. This problem has a long history, culminating in a difficult
paper by Zalesskĭı and Serežkin, [40]. (A more geometrical proof for the
corresponding projective linear groups was given by Wagner in [38, 39].)

Suppose then that G is a finite, irreducible reflection group in GL(V ),
where V has dimension n > 3 over K; and let L be an algebraic closure
for K. Also suppose that G contains no non-trivial transvection. The key
theorem in [40, p. 478] states that, up to conjugacy in GL(VL) (i.e. allowing
extension of scalars), G must be

1. a group of orthogonal type O(n, q, ε) or Oj(n, q, ε); or

2. the reduction mod p of a finite, irreducible orthogonal or unitary group
generated by reflections in characteristic 0; or

3. one of two special groups of unitary type over finite fields, namely
[EJ3(5)]5 (n = 3, over GF (52)), or [J4(4)]3 (n = 4, over GF (32)); or

4. [Ân]p ' Sn+2, when p | (n+ 2).

Concerning the last case, recall that the usual permutation action of Sm+1

on Km+1 leaves invariant a subspace V of dimension m, in which Sm+1 is
usually represented faithfully and irreducibly as the group Am. However,
if p | (m + 1), V itself has a 1-dimensional invariant subspace, and from
the resulting quotient we obtain the irreducible and faithful representation
[Âm−1]

p of degree m−1 for Sm+1. For similar reasons, [E6]
3 is not irreducible,

and so we obtain a faithful representation [Ê5]
3 of degree 5 for the group E6.

(Note that the subscripts in these examples do correctly indicate the degree
of an irreducible representation.)

An indication of the depth of this classification can be seen in many exam-
ples in §5. If G is an infinite, irreducible linear Coxeter group (Lemma 2.2),
then Gp can take no ‘middle ground’: it must either (rarely) be some fi-
nite Coxeter group, or (usually) must jump in size to some orthogonal group
O(n, q, ε) or Oj(n, q, ε). This is remarkable, given the relatively small number
of generators.

For our purposes below, we may restrict our considerations to a more
manageable subclass of these groups described in the next theorem; see also
the remarks that follow.
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Theorem 4.1. Suppose G ⊆ GL(V ) is a finite irreducible group generated
by reflections r0, . . . , rn−1, where V has dimension n > 3 over the finite field
K = GL(q), of characteristic p > 2. Also suppose that G leaves invariant
some non-zero bilinear form. Then, up to conjugacy in GL(VL), the group G
is either

(a) an orthogonal group O(n, q, ε) or Oj(n, q, ε), excluding the cases O1(3, 3, 0),
O2(3, 5, 0), O2(5, 3, 0) (assuming for these three that disc(V ) ∼ 1), and also
excluding the case Oj(4, 3,−1); or

(b) the reduction mod p of one of the finite linear Coxeter groups generated
by reflections in characteristic 0, namely the groups of type An, Bn, Dn, E6

(p 6= 3), E7, E8, F4, H3 or H4.

Proof. Since G is an irreducible reflection group, any non-zero invariant
bilinear form x · y is necessarily symmetric and non-singular [3, chap.v, §2,
prop.1]. Thus, by Lemma 2.1(e), G contains no non-trivial transvection, so
that we may apply the main classification theorem.

First of all, our insistence that G be generated by n = dim(V ) reflections

immediately rules out the cases G = [Ân]p (when p | (n+ 2)), Oj(4, 3,−1) '
[Â4]

3, O2(3, 5, 0) ' [Â3]
5 and O2(5, 3, 0) ' [Ê5]

3. In each of these cases, n+ 1
reflections are required to generate the group ([40, 0.8]). Also, O1(3, 3, 0) is
not irreducible.

It remains to rule out certain groups of unitary type. The groupG = J3(5)
(= [1 1 15]4) of order 2160 and acting on unitary space C3 is typical. Following
[8, p. 406] or [27, p. 331, Table 9D1], we recall that G is generated by
reflections r0, r1, r2 whose roots are the standard basis vectors e0, e1, e2, for
which the underlying Hermitian form has Gram matrix

B = [bij] =

 1 λ −1/2

λ 1 −1/2
−1/2 −1/2 1


where

λ = − cos(
π

5
) e2πi/3 =

−τω
2

,

with τ = (1 +
√

5)/2 and ω = (−1 + i
√

3)/2.
Following [8, §4], we next encode this data in the root diagram

16



•OO

λ

r1

r0

•

−1/2

r2

~~~~~~~

−1/2 @@
@@

@@
@

•

(10)

(Since all reflections here have period 2, we use • as a convenient abbreviation
for Cohen’s ©2 . See Table 2 and (8) for a full list of the relevant diagrams.)

Now let us reduce G mod p, and suppose that Gp leaves invariant a sym-
metric bilinear form x ·y. Since, of course, G also leaves B invariant, we find,
for all i, j, k that

ei · ej = rk(ei) · rk(ej) = (ei − 2bkiek) · (ej − 2bkjek) .

Thus, since 2 is invertible, we have

bkiek · ej + bkjei · ek = bkibkjek · ek .

Using this condition and the fact that the diagram has a spanning tree with
real, invertible labels, we eventually find that either x · y is identically 0,
or λ ≡ λ (mod p) (even allowing extension of scalars). In the first case,
Gp is excluded by hypothesis, whereas in the second case, we must have
p = 3. Indeed, when p = 3, B reduces to a symmetric matrix and G3 pre-
serves both a symmetric and Hermitian form. In fact, [J3(5)]3 ' O1(3, 3

2, 0),
of order 2160/3 = 720. (Since e2j = 1, each rj has square spinor norm.)
Similar considerations apply to the groups Bn(2k) (k > 2), Dn(k) (k >
3), J3(4), N4, EN4, K5, and K6, as well as to [EJ3(5)]5, which has [J3(5)]5

as a subgroup for p = 5 only, and to [J4(4)]3, which for p = 3 extends [J3(4)]3

in a natural way. The few groups that do arise in this fashion are already
listed under (a) or (b). �
Remarks on Theorem 4.1 and Table 1.

We summarize some useful data for the various cases in Table 1. For
certain groups G, there are restrictions on the characteristic p or on the
(minimal) order q of the ground field K. We also indicate the order |Z(G)|
of the centre; d(G), the maximum order |rr′| of a product of two reflections
r, r′ ∈ G; and k(G), the number of conjugacy classes of reflections in G (see
[40, pp. 478-481]). In describing the orders of the groups of orthogonal type,
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we employ

Φ(n, q, 0) := q(n−1)
2/4

(n−1)/2∏
j=1

(q2j − 1), for odd n

Φ(n, q, ε) := qn(n−2)/4 (qn/2 − ε)
(n−2)/2∏
j=1

(q2j − 1), for even n

([1, III. 6] and Proposition 3.1).
Finally, note some coincidences and exclusions in the tables:

1. O(3, 3, 0) ' [B3]
3, the symmetry group of the ordinary cube, and

|Ω(3, 3, 0)| = 12. Assuming disc(V ) ∼ 1, we have O2(3, 3, 0) ' [A3]
3 '

S4, whereas O1(3, 3, 0) ' C2 × C2 × C2 is not irreducible.

2. Assuming disc(V ) ∼ 1, we find that O1(3, 5, 0) ' [H3]
5, whereas

O2(3, 5, 0) ' [Â3]
5 ' S5. Likewise, O2(5, 3, 0) ' [Ê5]

3. Complementary
exclusions hold when disc(V ) ∼ γ.

3. O1(4, 3,−1) ' O2(4, 3,−1) ' [Â4]
3 ' S6.

4. In the full orthogonal group O(4, 3,+1) ' [F4]
3 , the subgroups

O1(4, 3,+1) ' O2(4, 3,+1) ' [D4]
3

have index 6.

5. O1(4, 5,+1) ' [H4]
5.
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G |G| |Z(G)| d(G) k(G)
(n > 3)

O(n, q, 0), n odd 2Φ(n, q, 0) 2 q + 1 2
O1(n, q, 0), n odd Φ(n, q, 0) 1 or 2 see [40, p.480] 1
(see remarks)
O2(n, q, 0), n odd Φ(n, q, 0) 2 or 1 see [40, p.480] 1
(see remarks)
O(n, q, ε), n even, ε = ±1 2Φ(n, q, ε) 2 q + 1 2
Oj(n, q, ε), n even, ε = ±1 Φ(n, q, ε) 1 or 2 see [40, p.480] 1
(assume q > 3 for n = 4)
[An]p, p - (n+ 1) (n+ 1)! 1 3 1
[Bn]p 2nn! 2 4 2
[Dn]p 2n−1n! gcd(n, 2) 3 1
[E6]

p, n = 6, p 6= 3 51840 1 3 1
[E7]

p, n = 7 210 34 5 7 2 3 1
[E8]

p, n = 8 214 35 52 7 2 3 1
[F4]

p, n = 4 1152 2 4 2
[H3]

p, n = 3 120 2 5 1
[H4]

p, n = 4 14400 2 5 1

Table 3: The Finite, Irreducible Reflection Groups in Theorem 4.1.
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5 Crystallographic Coxeter Groups and Their

Modular Reductions

We return now to the standard representation R of the Coxeter group Γ in the
real vector space V , with basis a0, . . . , an−1 and equipped with the symmetric
bilinear form x ·y defined in (6). We shall say that Γ is crystallographic (with
respect to the standard representation) if the corresponding linear Coxeter
group G := R(Γ) leaves invariant some lattice Λ in V . (By ‘lattice’ we mean
here the Z-module spanned by some basis of V .) Naturally, G is also said to
be crystallographic.

Now let G once more be any Coxeter group. Following [25, §1] we say
that a set β = {tiai} of positive multiples of the ai is a basic system for G if

mij := −t−1i (ai · aj)tj ∈ Z, 0 6 i, j 6 n− 1. (11)

Notice that M := [mij] is a Cartan matrix for G, with respect to the new
basis β. In particular, mii = −2 and mijt

2
i = mjit

2
j for all i, j; and mij = 0,

if pij = 2. Furthermore, for the rescaled roots bi := tiai, we immediately see
that

ri(bj) = bj +mijbi (12)

so that the corresponding root lattice Q(β) := ⊕jZbj actually is G-invariant.
In fact, the converse holds and the crystallographic condition can even be
described purely in terms of the presentation (1).

Proposition 5.1. The following are equivalent for the standard linear Cox-
eter group G.

(a) G is crystallographic.
(b) There exists a basic system β for G.
(c) For all i 6= j, pij ∈ {2, 3, 4, 6,∞}; and in every circuit in the Coxeter

diagram ∆c(G), the number of branches marked 4 and the number marked 6
are even.

Proof. See [25, §1] and [3, chap.v, §4, exer.6] or [28, pp. 104-105]. In
fact, we shall verify part of (b) ⇒ (c) below. �
Remarks : G may admit many essentially distinct invariant lattices. How-
ever, when the form x · y on V is non-singular, and in particular when G is
finite, all G–invariant lattices can be classified in a natural way ([4, 24, 25]).
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Suppose now that β is a basic system for the crystallographic Coxeter
group G, and for any i 6= j, consider the dihedral subgroup 〈ri, rj〉. By (11)
and (6), we conclude that

4 cos2
π

pij
= mijmji

is an integer, namely 0, 1, 2, 3 or 4, so that pij = 2, 3, 4, 6 or ∞, respectively.
Define the ratio kij := t2j/t

2
i . If pij = 2, then mij = mji = 0 and kij is

indeterminate. Otherwise, we may suppose that mij > mji > 1, whence
1 6 mij,mji 6 4, so that kij = mij/mji = 1, 2, 3, 4( or 1) for pij = 3, 4, 6 or
∞, respectively.

Following [10, p. 415], we shall conveniently represent the various possible
basic systems {tiai} for a given crystallographic group G by a new diagram
∆(G) (a variant of the Coxeter diagram): for 0 6 i, j 6 n − 1, node i is
labelled 2t2i ; and distinct nodes i 6= j are joined by

λij := min{mij,mji}

unlabelled branches. (Note that λij = λji = 0, 1 or 2. Thus the underlying
graph is essentially that of ∆c(G), except that a mark pij = ∞ is indicated
by a doubled branch in the case that mij = mji = 2 .) In Table 4 we display
the possible subdiagrams corresponding to the dihedral subgroups 〈ri, rj〉.
For simplicity we have replaced the node labels 2t2i , 2t

2
j by s, t or s, ks, (k =

1, 2, 3, 4) as appropriate. We also list the associated binary quadratic forms,
as described below.

Nodes i, j Parameters λij The binary quadratic form
s• t• pij = 2 0 sx2i + tx2j
s•−−−ks• pij = 3, 4, 6,∞ 1 s(x2i − kxixj + kx2j)

(k = 1, 2, 3, 4)
s•===

s• pij =∞ 2 s(xi − xj)2
(k = 1)

Table 4: Basic Systems for the Dihedral Groups 〈ri, rj〉.

Clearly it is the ratio of labels on adjacent nodes that matters here; and
given any acceptable choice for such ratios, the node labels are determined
up to scale on each connected component of ∆(G). In fact, we may take
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the labels on any particular connected component to be a set of relatively
prime positive integers. Consequently, if ∆c(G) is connected, there are, up
to similarity, only finitely many different basic systems for G.

For example, the group G with Coxeter diagram

•
4
•

6
•

is crystallographic and acts naturally on H2. Now k01 = 2±1 and k12 = 3±1,
so that by suitably adjusting the ti, any basic system for G is described (up
to scale) by one of the following diagrams:

1• 2• 6• 3• 6• 2•

2• 1• 3• 6• 3• 1•

Notice that the Gram matrix B = [bij] := [bi · bj] is easily computed from
the diagram, since bii = 2t2i is simply the label attached to node i, and

bij =
−λij

2
max{bii, bjj} (i 6= j). (13)

(It is useful to note also that bij = −mijt
2
i = −mjit

2
j , so that mij = −2bij/bii.)

The diagram just as well describes the associated quadratic form f(x) :=
x · x. Indeed, computing with respect to the basis β we obtain

f(x) = (x0b0 + · · ·+ xn−1bn−1)
2

=
∑
i

biix
2
i −

∑
i<j

λij max{bii, bjj}xixj . (14)

Thus, if all bii ∈ Z, as we can always assume here, we conclude that f is an
integral quadratic form. (Such forms are of particular interest in the cases
that G acts on En−1, Sn−1 or Hn−1, in such a way that the fundamental region
is a simplex of finite volume; see [10] and [28], where the full unit groups of
such forms are determined.) Next to each diagram in Table 4 we have for
convenience also indicated the corresponding binary quadratic form

(xibi + xjbj)
2 .

The computation of disc(V ) = det(B) is simplified if ∆(G) has a univalent
node j, say adjacent to node k. If B[j] (resp. B[j,k]) denotes the submatrix
of B obtained by deleting row and column j (resp. j, k), then
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det(B) = bjj det(B[j])− b2jk det(B[j,k]). (15)

(Expand along row j [10, p.426].)

For example, the diagram
6• 3• 1• from above has Gram matrix

B =

 6 −3 0
−3 3 −3/2

0 −3/2 1


and associated quadratic form

f = 6x20 − 6x0x1 + 3x21 − 3x1x2 + x22 .

Taking j = 0, k = 1, we note that det(B[0]) = 3(1)− (−3
2
)2 = 3

4
, so that

det(B) = 6(
3

4
)− (−3)2(1) = −9

2
. (16)

We now focus our investigations by henceforth assuming that Γ is a crys-
tallographic Coxeter group for which the diagram ∆c(Γ) is a string with
branch labels

pj := pj−1, j ∈ {3, 4, 6,∞} .

Furthermore, we may now unambiguously denote Γ by [p1, . . . , pn−1], a re-
minder that Γ is the automorphism group of the universal regular polytope
P = {p1, . . . , pn−1} (see [27, §3D]).

Since ∆c(Γ) is connected, the corresponding geometric group G ' Γ has
to scale only finitely many basic systems β. Any such system, as well as
the corresponding Gram matrix B, is represented by an essentially unique
diagram ∆(G), in which node labels form a set of relatively prime positive
integers (cf. the group G = [4, 6] described above).

Since the group G is crystallographic, it is represented by integral matrices
with respect to the root basis β. In particular, using (13) we have

ri(bi) = −bi
ri(bj) = bj + λij max{1, bjj/bii}bi , (i 6= j) (17)

and so easily obtain the matrix for ri from the diagram.
Before proceeding, we first consider how G might depend on the choice

between two basic systems β, β′. By our earlier observations, we can convert
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from ∆(G) to ∆′(G) by consecutively inverting the ratios of the labels on
various pairs of adjacent nodes. If nodes i, j are joined by a single branch,
then the effect on the corresponding roots may be described by

b′i = kεbi , b′j = bj

for a suitable choice of ε = ±1, and where k = 1, 2, 3, 4 for pij = 3, 4, 6,∞,
respectively (cf. Table 4). Likewise, when pij =∞, a similar transformation,
with k = 2, effectively doubles a single branch connecting the corresponding
nodes (and balances their labels), or converts a double branch into a single
branch (with ratio 4). Following these adjustments on pairs of nodes, we
may finally have to rescale the entire set of labels. In the end, however, we
conclude that the new Gram matrix

B′ = δ(DBD)

for some diagonal matrix D whose diagonal entries, like the scale factor δ,
are rational numbers of the form 2x3y, for x, y ∈ Z.

Now fix an odd prime p. As described in §2, we may reduce G mod p.
The natural epimorphism Z −→ Zp induces a homomorphism of G onto a
subgroup Gp of GLn(Zp), the group of invertible n × n matrices over Zp.
Notice that the homomorphic image of ri is still a reflection, since p 6= 2;
in fact, ri has a 1-dimensional direction space and is involutory. We shall
conveniently abuse notation by letting ri, B = [bij], f refer as well to their
modular images. Similarly, {bi} will denote the usual basis for Znp , the space
of column vectors over Zp. Thus, from this point of view,

Gp = 〈r0, . . . , rn−1〉

is a subgroup of the orthogonal group O(Znp ) of isometries for the symmetric
bilinear form x · y, defined on Znp by means of the Gram matrix B. (It may
be that x · y is singular.)

We note that when p > 5, a change in the underlying basic system has
the effect of merely conjugating Gp inside GLn(Zp) (by a diagonal matrix
D). In fact, the matrices representing the elements of Gp in the two bases
are similar (under D). Likewise, the corresponding quadratic form f can
change in only an inessential way (cf. [1, p. 144]). The same conclusions
hold when p = 3, so long as no branch of ∆c(Γ) is labelled ‘6’ ( no factor 3y

occurs in this case). However, we will find that the remaining cases are less
predictable.
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Remark. The above observations hold for a crystallographic Coxeter group
with any sort of connected diagram.

Our goal now is to assess when Gp is a string C-group, so that we must
determine when the intersection condition (3) is inherited from G by Gp.
We begin with some observations about the geometric action of the standard
subgroups of G or Gp. For any J ⊆ {0, . . . , n − 1}, we let GJ := 〈rj | j 6∈
J〉; in particular, for k, l ∈ {0, . . . n − 1} we let Gk := 〈rj | j 6= k〉 and
Gk,l := 〈rj | j 6= k, l〉. Similarly, Gp

J , G
p
k, G

p
k,l will denote the images in Gp

of these subgroups of G. We also let VJ be the subspace of Znp spanned by
{bj : j 6∈ J}, and similarly for Vk, Vk,l.

For g ∈ Gp
J and 0 6 k 6 n− 1, it follows at once from (17) that

g(bk) = bk +
∑
j 6∈J

xjbj . (18)

Next we make a convenient

Definition 5.2. If p > 5, or p = 3 but no branch of ∆c(G) is marked 6, then
we say that p is generic for (the crystallographic Coxeter group) G.

In generic cases, no node label of the diagram ∆(G) (for a basic system) is
zero mod p and a change in the underlying basic system for G has the effect
of merely conjugating Gp in GLn(Zp). On the other hand, in the non-generic
case, in which p = 3 and ∆c(G) has branches marked 6, the group Gp may
depend essentially on the actual diagram ∆(G) taken for the reduction mod
p. (Note that p generic does not necessarily mean that p - |G|, or that certain
subspaces of V are non-singular, etc.)

Lemma 5.3. Let J ⊆ {0, . . . , n− 1}. Then
(a) VJ is a Gp

J – invariant subspace of dimension n− |J | in Znp .
(b) rk ∈ Gp

J implies k 6∈ J .
(c) Suppose that (rad V ) ∩ VJ = {o}. Then the subgroup Gp

J is, by
restriction to the invariant subspace VJ , isomorphic to Hp, the reduction
modulo p of the group of rank n − |J | defined from the subdiagram of ∆(G)
which results from the deletion of nodes j ∈ J . In particular, when J = {0}
or {n− 1}, this holds if p is generic for G.

Proof. We need only address part (c). This result is well known in charac-
teristic 0 [21, §5.5]. Here we restrict g ∈ Gp

J to the invariant subspace Vj,
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and so obtain a homomorphism

ϕ : Gp
J −→ O(VJ)

g 7−→ g|VJ .

Of course, as a subspace of V , VJ is isometric to Zn−|J |p , with the metric
structure obtained from the subdiagram of ∆(G) obtained by deleting nodes
j ∈ J . Clearly the image group ϕ(Gp

J) is isomorphic to the reflection group
Hp of rank n − |J | defined directly from the subdiagram after reduction
modulo p.

Suppose g ∈ kerϕ. Then g(bk) = bk for all k 6∈ J , whereas for each i ∈ J
we have g(bi) = bi + xi for certain x ∈ VJ . Thus,

bi · bk = g(bi) · g(bk) = (bi + xi) · bk = bi · bk + xi · bk ,
so that xi · bk = 0, and xi ∈ rad VJ . Because of this, for any i, ` ∈ J we have

bi · b` = (bi + xi) · (b` + x`) = bi · b` + xi · b` + bi · x` + xi · x`,

so that 0 = xi · b` + bi · x`. In particular, each xi · bi = 0, which altogether
means xi ∈ rad V . By hypothesis, this forces xi = o, and so ϕ is injective.

When p is generic for G, a direct calculation in coordinates along the
string diagram shows that (rad V ) ∩ Vj = {o} for j = 0, n− 1. �

Remarks. The Lemma gives a condition under which the action of Gp
J on

VJ can be reconstructed from the subdiagram of ∆(G) induced on the node
set complementary to J .

A little more informally, we might say that reduction by a generic prime
commutes with the deletion of a node from ∆(G). Note that

Gp
j ' [p1, . . . , pj−1]

p × [pj+2, . . . , pn−1]
p ' [p1, . . . , pj−1, 2, pj+2, . . . , pn−1]

p .

Concerning the non-generic cases, there are examples showing the neces-
sity of the hypotheses. For example, the group G ' [4, 3, 6] with diagram

2• 1• 1• 3•

yields a C-group G3 of order 2592. Here the subgroup G3
0 is the automor-

phism group of order 108 for the toroidal polyhedron {3, 6}(3,0). However,
the subdiagram

1• 1• 3•
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yields the smaller group of order 36 for {3, 6}(1,1). Thus the map ϕ of the
Lemma is here not injective.

It is worth noting here that it is quite possible for a subspace VJ , which
is non-singular in characteristic 0, to become singular under reduction mod
p. At one extreme, we may have disc(V ) ≡ 0 (mod p). At the other, it may
happen that certain bj become isotropic. Actually, in our setup, the latter
degeneracy occurs only when p = 3 and some rj−1rj has period 6; and in all
such cases it must be that disc(V ) ≡ 0 (mod 3).

Although the situation for higher ranks is complicated, we can now say a
few general things about the intersection condition.

Theorem 5.4. Let G = 〈r0, . . . , rn−1〉 be a crystallographic linear Coxeter
group with string diagram, and suppose the prime p > 3. Suppose that Gp

0

and Gp
n−1 are string C-groups, and that the subspace V0,n−1 is non-singular

(i.e. det(B[0,n−1]) 6≡ 0 mod p). Then if Gp
0,n−1 is the full orthogonal group

O(n− 2, p, ε) on V0,n−1, G
p must be a string C-group.

Proof. Let g ∈ Gp
0 ∩ G

p
n−1. By Lemma 5.3(a), g induces an isometry on

the non-singular subspace V0,n−1. By hypothesis, the subgroup Gp
0,n−1 of

Gp
0 (or Gp

n−1) is large enough that there must exist g̃ ∈ Gp
0,n−1 such that

g, g̃ have the same action on V0,n−1. Thus, since our goal is to show that
Gp

0 ∩ G
p
n−1 ⊆ Gp

0,n−1, we may assume without loss of generality that g acts
as the identity e on V0,n−1. But by (18), g(b0) = b0 + u, g(bn−1) = bn−1 + v,
for u, v ∈ V0,n−1. For arbitrary w ∈ V0,n−1 we now have

b0 · w = g(b0) · g(w) = (b0 + u) · w = b0 · w + u · w ,

so that u · w = 0, and so u = o. Thus g(b0) = b0; similarly g(bn−1) = bn−1.
Hence g = e, and Gp

0 ∩G
p
n−1 = Gp

0,n−1. �
The proof of the next result is greatly simplified by exploiting the contra-

gredient action of G on the dual space V̌ , working for now in characteristic
0. Thus, if {µi} is the basis of V̌ dual to {bi}, then from (12) we find that

ri(µj) = µj, if i 6= j, (19)

ri(µi) = mi,i−1µi−1 − µi +mi,i+1µi+1 ,

(takingm0,−1 = mn−1,n = 0). Note that the dual lattice⊕jZµj isG-invariant.
Moreover, it is well known [21, Th. 5.13(a)] that

StabG(µ0) = G0 . (20)
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Thus, when G is of spherical type and is therefore some finite Coxeter
group [p1, . . . , pn−1], the G-orbit of µ0 has size [G : G0]. Furthermore, in this
case the Euclidean space V is naturally isomorphic to V̌ , so that we may
identify µ0 with a point w ∈ V satisfying w · bj = 0, for 1 6 j 6 n − 1. We
may thus view µ0 (or w) as the base vertex in the universal regular polytope
{p1, . . . , pn−1}, as realized by Wythoff’s construction; see [27, 3D6, 3D7].

Clearly, the essentials of this description survive reduction mod p, and
again we may abuse notation in an obvious way. In particular, we may think
of {µj} as the usual basis for the space Žnp of row vectors over Zp. Each ri,
being an involution, is represented by the same matrix as before, now acting
on Žnp by right multiplication.

Theorem 5.5. Let G = 〈r0, . . . , rn−1〉 be a crystallographic linear Coxeter
group with string diagram, and suppose the prime p > 3. If Gn−1 is of
spherical type and Gp

0 is a string C-group, or (dually) if G0 is of spherical
type and Gp

n−1 is a string C-group, then Gp is a string C-group.

Improved Proof. We need only consider the case that Gn−1 is of spherical
type. For k < n− 1, let sk := rk|Vn−1 , where Vn−1 here refers to the subspace
of V = V p spanned by b0, . . . , bn−2. Let

ϕ : Gp
n−1 −→ H := 〈s0, . . . , sn−2〉
rk 7→ sk

be the epimorphism induced by restriction to Vn−1. By Lemma 5.3(c), this
is an isomorphism if radV ∩ Vn−1 = {o}. In fact, when Gn−1 is spherical,
the latter condition is usually forced by radVn−1 = {o}. But there are a
few exceptions with An−1 or I2(6), for sporadic primes. Therefore we take a
different, more uniform approach.

Note that H is just the group induced by the subdiagram on nodes
0, . . . , n−2. In all cases, we have independently checked that H is isomorphic
to the corresponding finite Coxeter group, which in turn is isomorphic to to

Gn−1. Since Gn−1
mod p
� Gp

n−1
ϕ
� H, we have Gn−1 ' Gp

n−1 ' H; and ϕ must
be an isomorphism. In particular, ϕ(Gp

0,n−1) = H0 = 〈s1, . . . , sn−2〉. Because
Gp
n−1 is therefore a string C-group, we need only show that

Gp
0 ∩G

p
n−1 = Gp

0,n−1,
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by Proposition 1.1(a). Let K := ϕ(Gp
0 ∩ G

p
n−1), so that H0 ⊆ K ⊆ H. Our

goal is to show that the index [K : H0] = 1.
Now suppose µ0, . . . , µn−1 be the basis for V̌ which is dual to b0, . . . , bn−1,

and let αk := µk|Vn−1 , for k < n− 1. Then α0, . . . , αn−2 is the dual basis for
V̌n−1.

Taking these quantities in characteristic 0, we have noted that we may
take theH-orbit of α0 to be the vertex-set for the spherical polytope P(Gn−1) =
P(Gp

n−1). There are [H : H0] such vertices.
Consider instead the situation modulo p. Our claim is that K stabilizes

α0 under its usual action on V̌n−1 = V̌ p
n−1. For g ∈ Gp

0 ∩ G
p
n−1, we have

ϕ(g) ∈ K and

ϕ(g)(b0) = b0 + x

ϕ(g)(bj) = x̃j, if j > 1,

for certain x, x̃j ∈ V0,n−1. Since α0 annihilates V0,n−1, this means that
α0(ϕ(g)(bj)) = δ0,j, for 0 6 j 6 n− 2. In brief, ϕ(g) really does fix α0.

Since K stabilizes α0, we will be done if we can show that the orbit of
α0 has the same size in characteristic p as in characteristic 0, as that would
force K = H0. Finally we arrive at an explicit and routine calculation.

It turns out that there is only one situation when the α0-orbit size col-
lapses, namely when Gn−1 = I2(6) with p = 3. Thus n = 3 in these non-
generic cases, and it remains only to consider diagrams ∆(G) which resemble

a• 3a• b• or
3a• a• b•,

for suitable labels a, b. Some of these can be settled by considering the
dual diagram; some instances of the right diagram fall to Theorem 5.4. All
remaining cases can be independently verified using GAP, or by hand, with
a bit of industry. We always get a string C-group Gp, even when p = 3. �

Remark. The conditions in Theorems 5.4 and 5.5 can often be quickly
established with the help of the diagram ∆(G), in tandem with Theorem 4.1.
In [30, 31] we use several refinements of the above ideas to tackle large classes
of examples of higher rank.
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6 Modular Polytopes of Low Rank

In this section, we completely describe the groups Gp with rank n 6 3.
We maintain our standing assumption that G is isomorphic to the crystallo-
graphic Coxeter group Γ, whose diagram ∆c(Γ) is a string with branch labels
3, 4, 6 or ∞.

Theorem 6.1. Suppose p > 3, and let G = 〈r0, . . . , rn−1〉 be a crystallo-
graphic linear Coxeter group with string diagram.

(a) Any group Gp of rank n = 1, 2 or 3 is a string C-group.
(b) In any group Gp of rank n > 2, each subgroup 〈ri, rj〉 with i 6= j is

dihedral of order 4, 6, 8, 12 or 2p.

Proof. We have already verified the case n = 1 with our earlier observation
that each ri has period 2 in Gp. For any two generating reflections ri, rj,
with i 6= j, we conclude from Lemma 5.3(b) that 〈ri, rj〉 is indeed a dihedral
group, and hence a string C-group, and that the period of rirj divides pij
(= 2, 3, 4, 6 or ∞). Since the plane spanned by {bi, bj} is 〈ri, rj〉– invariant,
a simple calculation with 2× 2 matrices suffices to show that rirj retains the
period pij in Gp, if pij < ∞. If pij = ∞, it is almost as easy to check that
rirj has period p in Gp.

Suppose now that n = 3. If p > 3, the subspace V0,2 spanned by b1
in Z3

p is non-singular, so that the intersection property follows directly from
Theorem 5.4. Even when p = 3, there can be doubt only in cases with p01 = 6
or p12 = 6. But all such groups are covered by Theorem 5.5. �

Whenever Gp is, in fact, a string C-group, we shall call the corresponding
polytope P = P(Gp) a modular polytope. (The dual polytope P∗ results
from listing the specified generators of Gp in reverse order.) When n = 1 we
obtain, of course, the unique rank 1 polytope { }, which is realized as a line
segment; and when n = 2, Gp is the dihedral symmetry group of the polygon
{q}, where in our cases we have q ∈ {2, 3, 4, 6, p}.

Let us now consider the rank 3 cases in some detail. If some branch of
the underlying Coxeter diagram is labelled 6 or is labelled ∞, when p > 5,
then the maximum rotation order d(Gp) > 6 (by Theorem 6.1(b)). Thus,
if V = Z3

p is non-singular and ∆(G) is a (connected!) string, then Gp is
irreducible by Lemma 2.2; and it follows from Theorem 4.1 and Table 3 that
Gp must be a full group of orthogonal type O(3, p, 0) or Oj(3, p, 0). Using
Proposition 3.1, it is then an easy matter to determine the precise group
from the quadratic character of the node labels.
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All remaining cases, in particular those in which disc(V ) ≡ 0 (mod p),
are handled easily enough by inspection. For completeness, we include the
rank 3 polytopes arising from disconnected diagrams.

It is useful to recall that each rank 3 Coxeter group Γ can be viewed as
a ‘triangle group’, with a natural action on S2, E2 or H2. (See [28] for a
description of the various cases, along with their analogues of higher rank.)
The polyhedron P is then considered to be a regular map on some compact
surface; in fact, this surface must be orientable, since Gp = Γ(P) has a
rotation subgroup of index 2 [15, §8.1].
A. Groups in which Γ has Spherical Type

When the Coxeter group Γ is itself finite, Γ acts naturally on the 2-sphere.
It is easy to check in each case that the reduction mod p is faithful, for any
prime p > 3.
6.1 The groups with diagrams

s• t• u• or
s• ks• t• (k = 1, 2, 3)

For each p > 3, the group Gp is a direct product I2(q) × C2, where
q = 2, 3, 4 or 6. The corresponding 3-polytope, or regular map P , is the
dihedron {q, 2}.
6.2 The groups with diagram

1• 1• 1•

For p > 3, Gp ' [A3]
p ' S4 is the automorphism group for the regular

tetrahedron P = {3, 3}.
6.3 The groups with diagram

2• 1• 1•

For p > 3, Gp ' [B3]
p ' S4 × C2 is the automorphism group for the

ordinary cube P = {4, 3}.
B. Groups in which Γ has Euclidean Type

We turn to the cases in which Γ acts naturally on the Euclidean plane,
so that disc(V ) = 0 [21, Ch.4].
6.4 The groups with diagram

s• 4s• t•
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Using Theorem 6.1(b), we easily see that for any p > 3, Gp is the direct
product I2(p)× C2, the group of the dihedron P = {p, 2}.
6.5 The groups with diagram

1• 2• 1•

For p > 3, the ‘translation’ x = r0r1r2r1 has odd period p. It follows that
Gp has order 8p2 and must be the automorphism group of the toroidal map
P = {4, 4}(p,0) (see [15, §8.3]).
6.6 The groups with diagram

3• 3• 1•

For p > 3, the ‘translation’ x = r0r1r2r1r2r1 has period p. In all cases, Gp has
order 12p2 and is the automorphism group of the toroidal map P = {3, 6}(p,0).

The diagram
1• 1• 3• yields an isomorphic group for p > 5. How-

ever, when p = 3, we obtain instead the automorphism group of order 36 for
the toroidal map P = {3, 6}(1,1).
C. Groups in which Γ has Hyperbolic Type

Up to similarity in GL3(Zp), the remaining cases are as follows. Here
we note that Ω(3, p, 0) ' PSL2(Zp) if V is non-singular (see [1, Th. 5.20]).
Furthermore, if p > 3, then

O1(3, p, 0) ' PSL2(Zp) o C2 ,

with a direct product occuring if and only if disc(V ) ∼ 1. Moreover, SO(3, p, 0) '
PGL2(Zp), if V is non-singular (see [1, p. 200]), so that

O(3, p, 0) ' PGL2(Zp) o C2 .

Note that since PSL2(Zp) is simple for p > 3, we cannot generally expect that
the regular polyhedra constructed below have interesting (regular) proper
quotients.
6.7 The groups with diagram

1• 1• 4• (disc(V ) = −1)

Here Gp is the automorphism group of a regular map of type {3, p}. For
p = 3 we once again obtain Gp ' [A3]

p ' S4 for the polyhedron {3, 3}. Since
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1, 4 are squares, we find for p > 5 that Gp = O1(3, p, 0) of order p(p2 − 1).
From our comments in §2 we conclude that the centre of Gp is non-trivial
if and only if p ≡ 1(mod 4). Keeping in mind that the rotation group of
O1(3, p, 0) is (usually) Ω(3, p, 0) ' PSL2(Zp), it is easy to see that we have
redescribed here the family of regular maps discussed in [26] or [34]. In
particular, when p = 5, G5 = O1(3, 5, 0) ' [H3]

5 is the automorphism group
for the regular icosahedron {3, 5}. Likewise, G7 is the group for the Klein
polyhedron {3, 7}8.
6.8 The groups with diagram

2• 1• 3• (disc(V ) = −3/2)

In this case, we obtain a mostly new family of finite regular maps of type
{4, 6}. For p > 5, V is non-singular, so that

Gp =

{
O1(3, p, 0) , if p ≡ ±1 (mod 24)
O(3, p, 0) , otherwise.

(Note that 2, 3 are both squares (mod p) just when p ≡ ±1 (mod 24).) Thus,
if either 2 or 3 is quadratic non-residue, then Gp is the full orthogonal group of
order 2p(p2−1), and the corresponding map has Euler characteristic −p(p2−
1)/12.

For p = 5, we have G5 = O(3, 5, 0) ' S5 × C2. We thus obtain in a new
way the Coxeter-Petrie polyhedron {4, 6 | 3} [15, §8.5]. From p = 7 we obtain
the map R15.4 of genus 15 in [9].

When p = 3, V is singular and G3 is the group of {4, 6}4, the dual of
the Petrial of the toroidal map {4, 4}(3,3). In fact, the same group arises in
another way as the reduction (mod 3) of

6• 3• 1• (disc(V ) = −9/2).

6.9 The groups with diagram

2• 1• 4• (disc(V ) = −4)

Again, this family of regular maps of type {4, p} is mainly new. For p > 3,
we have

Gp =

{
O1(3, p, 0) , if p ≡ ±1 (mod 8)
O(3, p, 0) , otherwise.
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In particular, G3 = O(3, 3, 0) ' [B3]
3 is the group of the cube {4, 3}; and

G5 = O(3, 5, 0) ' S5×C2 appears anew as the group of Gordon’s map {4, 5}6
of genus 4 (see [17]). For this diagram, p = 7 gives the map R10.9 of [9].
6.10 The groups with diagram

1• 3• 1• (disc(V ) = −3/2)

We obtain a family of regular maps of type {6, 6}. For p > 5 we find that

Gp =

{
O1(3, p, 0) , if p ≡ ±1 (mod 12)
O(3, p, 0) , otherwise.

Taking p = 5 we obtain the map R11.5 of [9].
When p = 3, we find that G3, of order 72, is the group for the Petrie dual

of Sherk’s map {6, 6}(1,1) [36]. We obtain the same polytope from
3• 1• 3•. However,

1• 3• 9• yields the automorphism group of
order 216 for the Petrie dual of Sherk’s map {6, 6}(3,0).
6.11 The groups with diagram

3• 1• 4• (disc(V ) = −9)

The maps in this case have type {6, p}. For p > 5 we again have

Gp =

{
O1(3, p, 0) , if p ≡ ±1 (mod 12)
O(3, p, 0) , otherwise.

In particular, G5 = O(3, 5, 0) ' S5×C2 is now the group for the map {6, 5}4,
the Petrial of {4, 5}6.

When p = 3 we find that G3, of order 36, is the automorphism group for

the toroidal map {6, 3}(1,1). Similarly, when p = 3,
1• 3• 12• yields the

group of order 108 for {6, 3}(3,0).
6.12 The groups with diagram

1• 4• 1• (disc(V ) = −4)

Finally, we have in this last case, an interesting family of self-dual maps of
type {p, p}. When p = 3, we once more obtain G3 = [A3]

3 ' S4.
For p > 5, Gp = O1(3, p, 0) has order p(p2 − 1). In particular, G5 now

appears as the group for the map {5, 5 | 3}, which can be metrically realized
in Euclidean space as either the great dodecahedron {5, 5/2}, or as its dual,
the small stellated dodecahedron {5/2, 5}.
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7 Modular Polytopes of Spherical or Euclidean

Type

In this section, we briefly discuss the modular polytopes associated with
the crystallographic string Coxeter groups G of spherical or Euclidean type.
Since the groups of rank at most 3 have already been treated, we now are
primarily interested in the case n > 4. We begin with the spherical groups.
A. Groups of Spherical Type

Here there are three kinds of string diagrams with n > 3 (up to duality),
namely An, Bn and F4. From general results we already know that Gp ' G
if p - |G|, but we shall see that indeed this is true for all p > 3.

The corresponding modular polytopes P(Gp) are isomorphic to the n-
simplex, n-cube or 24-cell, respectively. Moreover, we obtain a “modular
representation” of P(Gp) in V̌ = Žnp by applying Wythoff’s construction
to Gp, with the point µ0 as initial vertex (see (19) and [27, Sect. 5A]). In
particular this completes the proof of Theorem 5.5, which requires us to verify
that the orbit of this point µ0 in V̌ has the same size as in characteristic 0.
When V is non-singular and hence is naturally isomorphic to V̌ , we obtain
an isomorphic modular representation of P(Gp) in V itself. Recall that the
base vertex w is then determined (to scale) by the equations w · bj = 0
(j = 1, . . . , n− 1).
7.1 The group Apn with diagram

1• 1• 1• · · · · · · · · · 1• 1•

Now Gp ' G ' Sn+1, for each n > 1 and each p > 3. In fact, observe that
Gp is a quotient of Sn+1 with the same Coxeter diagram (see Theorem 6.1b),
and that Sn+1 does not have any non-trivial normal subgroups other than
the alternating group if n > 4 (the case n 6 3 was settled before). It
follows that P(Gp) is isomorphic to {3n−1}, the regular n-simplex. Note that
disc(V ) = (n+ 1) 2−n, so that V is non-singular if and only if p - (n+ 1).

For any characteristic p, the orbit of the base vertex µ0 under Gp consists
of the n+ 1 distinct points

νk := µk − µk−1 (k = 0, . . . , n),

taking µ−1 = µn = o, the origin in V . Then ν0, . . . , νn are the vertices of a
modular representation of the regular n-simplex in Žnp .
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7.2 The group Bp
n with diagram

2• 1• 1• · · · · · · · · · 1• 1•

Now Gp ' G ' Cn
2 o Sn, for each n > 2 and each p > 3, where the

semi-direct product in Gp is determined by Gp
0 ' Sn and N0 := 〈gr0g−1 | g ∈

Gp
0〉 ' Cn

2 . The latter subgroup of Gp is generated by the reflections in V
whose roots are the vectors (of squared length 2) in the orthogonal basis

c0 := b0, c1 := r1(b0), c2 := r2r1(b0), . . . . . . , cn−1 := rn−1rn−2 · · · r1(b0).

Note that

cj = b0 + 2(b1 + b2 + . . .+ bj) (j = 0, . . . , n− 1).

In particular, Gp
0 permutes the vectors c0, . . . , cn−1 like an Sn, whereas N0

takes each cj to ±cj. The corresponding polytope P(Gp) is isomorphic to
the n-cube {4, 3n−2}.

Then the initial point, being invariant under Gp
0, is given by w := c0+c1+

. . .+cn−1. Its orbit consists of the 2n vertices ±c0±c1±. . .±cn−1 of a modular
representation of the n-cube in (the non-singular space) Znp . Similarly, by
switching to the base vertex cn−1, we obtain a modular representation of the
(dual) crosspolytope, whose 2n vertices are the points ±cj, (0 6 j 6 n− 1).
We do not actually need to work in the space V̌ here, and merely note that
the basis {νj} dual to {cj} is given by

ν0 = µ0 −
1

2
µ1

νj =
1

2
(µj − µj+1), (1 6 j 6 n− 2)

νn−1 =
1

2
µn−1 .

7.3 The group F p
4 with diagram

2• 2• 1• 1•

Now we have F p
4 ' F4, for each p > 3. In fact, consider the subgroup B

of Gp = 〈r0, . . . , r3〉 generated by the reflections

s0 := r1, s1 := r2, s2 := r3, s3 := r0r1r2r1r0

36



with roots

a0 := b1, a1 := b2, a2 := b3, a3 := r0r1(b2) = b0 + b1 + b2,

respectively. Then B is a reflection group of type Bp
4 ' B4 (with a diagram

as in 6.2, with n = 4). Let c0, . . . , c3 be the orthogonal basis associated
with B. In characteristic 0, the corresponding subgroup has index 3 in F4,
so it suffices to check that this is also true mod p. But r0 6∈ B (the lines
spanned by c0, . . . , c3 are not permuted by r0), so B must indeed be a proper
subgroup. Hence, Gp ' F4 and the polytope P(Gp) is isomorphic to the
24-cell {3, 4, 3}.

The initial vertex, being invariant under Gp
0 = 〈r1, r2, r3〉 = 〈s0, s1, s2〉,

now corresponds to the “center” of the base facet of the 4-cube associated
with B in Z4

p and thus is given by

w := c3 = a0 + 2(a1 + a2 + a3) = 2b0 + 3b1 + 4b2 + 2b3.

The orbit of w then consists of the 24 vertices

±c0, ±c1, ±c2, ±c3, 1
2
(±c0 ± c1 ± c2 ± c3)

of a modular representation of the 24-cell in (the non-singular space) Z4
p.

Note that r0(c3) = 1
2
(c0 + c1 + c2 + c3).

Once again we observe without further checking that the Gp orbit of µ0

in V̌ has size 24, for any p > 3.
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B. Groups of Euclidean Type
The Euclidean groups of ranks 2 or 3 were already discussed in the previ-

ous section, so it remains to investigate the Coxeter groups G = [4, 3n−3, 4] or
[3, 4, 3, 3] associated with the regular tessellations {4, 3n−3, 4} or {3, 4, 3, 3}
in En−1 or E4, respectively. Now V is singular, for each p, with a radical of
dimension 1. The resulting modular polytopes P(Gp) are regular toroids of
ranks n or 5, respectively (see [27, Sect. 6D,6E]).
7.4 The group [4, 3n−3, 4]p with diagram

2• 1• 1• · · · · · · · · · 1• 1• 2•

We allow n > 3. The subgroups Gp
0 and Gp

n−1 of Gp are isomorphic to
the finite reflection groups associated with the corresponding subdiagrams
and thus are of type Bp

n−1. The intersection property of Gp follows from
Theorem 5.5. (For a direct proof in all cases, recall that Gp

n−1 ' N0oGp
0,n−1,

where N0 = 〈gr0g−1 | g ∈ Gp
0,n−1〉 is the group associated with the orthogonal

basis c0, . . . , cn−2 for Bp
n−1. Now, if h ∈ Gp

0 ∩ G
p
n−1, then, by changing h

modulo Gp
0,n−1, we may assume that h ∈ N0. We need to prove that h = e,

the identity mapping. Using the fact that h must leave V0,n−1 invariant,
we then further conclude that h is ±e on V0 and thus on V . But −e =
(r0r1 · · · rn−2)n−1 in Bp

n−1, so the case h = −e can also be ruled out by
verifying that the latter element does not map bn−1 to −bn−1.)

Now P(Gp) = {4, 3n−3, 4}(p,0,...,0) (with n − 2 entries 0 in the subscript)
is the regular toroid of rank n with automorphism group Gp ' Cn−1

p o
Bn−1. Its pn−1 facets are cubes, and the vertex-figures at its pn−1 vertices are
crosspolytopes. For the isomorphism with the toroid, note that, since p is a
prime, it suffices to verify the relation

(r0r1r2 · · · rn−2rn−1rn−2 · · · r2r1)p = e

(see [27, Thm. 6D4]). Here, the reflection r := r1r2 · · · rn−2rn−1rn−2 · · · r2r1
is conjugate to rn−1 and its root is given by

b := r1r2 · · · rn−2(bn−1) = bn−1 + 2(bn−2 + . . .+ b1)

(this is the last vector in the orthogonal basis associated with the vertex
figure group Gp

0). The plane spanned by the roots b0 of r0 and b of r is easily
seen to be singular (it contains the radical of V , spanned by b+ b0), so that
the product r0r does indeed have period p.
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7.5 The group [3, 4, 3, 3]p with diagram

2• 2• 1• 1• 1•

Now we have Gp
0 ' Bp

4 ' B4 and Gp
n−1 ' F p

4 ' F4. The intersection prop-
erty of Gp follows directly from Theorem 5.5, for all p. The corresponding
polytope is the toroid P(Gp) = {3, 4, 3, 3}(p,0,0,0) of rank 5, whose automor-
phism group is Gp ' C4

poF4. Its p4 facets are 24-cells, and the vertex-figures
at its 3p4 vertices are 4-cubes. For the isomorphism with the toroid we now
need to verify the relation

(r4s t s)
p = e,

with s := r3r2r1r2r3 and t := r0r1r2r1r0 (see [27, Thm. 6E6]). The reflection
r := s t s is conjugate to r2 and has root

b := s r0r1(b2) = b0 + 2b1 + 3b2 + 2b3.

The plane spanned by the roots b4 of r4 and b of r is again singular (it
contains the radical of V , now spanned by b+ b4), so the product r4r indeed
has period p.
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8 The Golden Section and the groups [3, 5, 3]

and [5, 3, 5]

In Section 5 we observed that any crystallographic string Coxeter group
G has rotational periods pj ∈ {2, 3, 4, 6,∞} and can be represented faithfully
as a matrix group over the domain Z. Here we widen the discussion a little
by allowing the period pj = 5. Keeping (6) in mind, we note that 2 cos π

5
= τ ,

where the golden ratio τ = (1 +
√

5)/2 is the positive root of τ 2 = τ + 1. We
therefore move to the larger coefficient domain

D := Z[τ ] = {a+ bτ : a, b ∈ Z} ,

and soon find that we need only add the subdiagram

s•−−−τ
2s•

to those already listed in Table 4 in order for the Cartan integersmij of (11) to
be in D for all i, j. This subdiagram, say on nodes i, j, does indeed define the
non-crystallographic dihedral group 〈ri, rj〉 with order 10 and period pij = 5.
(In other notation, this is the group H2 ' I2(5).) Naturally, we must now
allow rescaling of nodes by any ‘integer’ s ∈ D or its inverse. Furthermore,
referring back to (11), we find that mij = τ 2 ∈ D, so that G is represented
as a matrix group over D through its action on the D-module ⊕jDbj.

Let us now summarize the key arithmetic properties of the domain D. (We
refer to [16] for a detailed account of this, and to [7] for a deeper discussion
of ‘D-lattices’ and the related finite Coxeter groups Hk, k = 2, 3, 4.) First
of all, we recall that D is the ring of algebraic integers in the field Q(

√
5).

The non-trivial field automorphism mapping
√

5 7→ −
√

5 induces a ring
automorphism ′ : D → D, which in this section we shall call conjugation.
Thus

(a+ bτ)′ = (a+ b)− bτ .

In particular, τ ′ = 1− τ = −τ−1. Recall that z = a+ bτ has norm N(z) :=
zz′ = a2 +ab− b2. We note that D is a Euclidean domain, through a division
algorithm based on |N(z)|.

The set of units in D is {±τn : n ∈ Z} = {u ∈ D : N(u) = ±1}.
Recall that integers z, w ∈ D are associates if z = uw for some unit u. Up
to associates, the primes π ∈ D can be classified as follows:
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• the prime π =
√

5 = 2τ − 1, which is self-conjugate (up to associates:
π′ = −π);

• rational primes π = p ≡ ±2 mod 5, also self-conjugate;

• primes π = a + bτ , for which |N(π)| equals a rational prime q ≡
±1 mod 5. In this case, the conjugate prime π′ = (a+ b)− bτ is not an
associate of π.

Let us now turn to the group G = [3, 5, 3], here acting as an orthogonal
group on real 4-space V . Since τ 2 is a unit, there is essentially only one
choice of diagram, namely

∆(G) =
1• 1• τ2• τ2• .

The discriminant is

disc(V ) = − 1

16
(2 + 5τ) ∼ −(2 + 5τ) ,

where the prime δ := −(2 + 5τ) has norm −11.
Now consider any prime π ∈ D. Our goals are to show that Gπ =

〈r0, r1, r2, r3〉π is a string C-group and to determine its structure, then say a
little about the corresponding polytope Pπ := P(Gπ).

In fact, we can almost immediately apply a suitable generalization of
Theorem 5.5 [29, Th. 4.2]. First note that the subgroup Gπ

3 = 〈r0, r1, r2〉π is
obviously some quotient of the spherical group [3, 5] ' H3. Now it is easy to
check that after reduction modulo any prime π, even for associates of 2, the
reflections rj still have period 2. Next, we consider the isometry

z := (r0r1r2)
5 =


−1 0 0 τ 4

0 −1 0 2τ 4

0 0 −1 3τ 2

0 0 0 1

 . (21)

in G. Since τ 4 is a unit, this means that r0r1r2 still has period 10 in Gπ. Thus
〈r0, r1, r2〉π ' [3, 5] and dually 〈r1, r2, r3〉π ' [5, 3]. Consulting the proof of
Theorem 5.5 (or [29, Th. 4.2]), we see that we need only show that the orbit
of µ0 := [1, 0, 0, 0] under the right action of the matrix group 〈r0, r1, r2〉 has
the same size modulo π as in characteristic 0, namely 12. This is routinely
verified, so we have proved most of
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Proposition 8.1. Let G = [3, 5, 3]. For any prime π ∈ D, the group Gπ =
〈r0, r1, r2, r3〉π is a finite string C-group. The corresponding finite regular
polytope Pπ is self-dual and has icosahedral facets {3, 5} and dodecahedral
vertex figures {5, 3}.

Proof. To verify self-duality we define g ∈ GL(V ) by g : [b0, b1, b2, b3] 7→
[τ−1b3, τ

−1b2, τb1, τb0]. Then g2 = 1, gr0g = r3 and gr1g = r2. (See [27,
2E12].) �

A more detailed description of Gπ must depend on the nature of the
prime π. (Of course, our results are typically unaffected by replacing π by
any associate ±τmπ.) In all cases the underlying finite field K := D/(π) has
order |N(π)|, so that Gπ acts as an orthogonal group on the 4-dimensional
vector space V over K preserving the modular image of the bilinear form for
G.
Case 1: π = 2.

Here an easy calculation using GAP confirms that Gπ is the orthogonal
group O(4, 22,−1) with Witt index 1 over K = GF (22). Since |G2| = 8160,
the polytope P2 has 68 vertices and 68 icosahedral facets.

Henceforth we suppose that π is not an associate of 2. To work with such
primes, we need a generalization of the rational Legendre symbol ( p | q ).
Thus for any α ∈ D and prime π we set

(α | π )D :=

{
+1, if α is a quadratic residue (mod π);
−1, otherwise.

(Compare [16, Ch. VIII].) We are mainly interested in computing

ε := ( δ |π )D

where δ = −(2+5τ) is the discriminant. Since every label in ∆(G) is square,
we conclude that Gπ is a subgroup of O1(4, |N(π)|, ε), so long as δ and π
are relatively prime. Indeed, Gπ will almost always equal such an orthogonal
group.

Case 2: π =
√

5 = 2τ − 1.
Here |ππ′| = 5 ≡ 0 mod π, so that the discriminant δ = −(2 + 5τ) ≡

3 mod π, which is non-square in K = GF (5). Thus ε = −1 and Gπ =

O1(4, 5,−1) has order 15600. In fact, the polytope P
√
5 is isomorphic to that

obtained in [30, p. 347] through reduction mod 5 of the crystallographic
group [3,∞, 3].
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Case 3: π is an associate of an odd rational prime p ≡ ±2 mod 5.
Since K = GF (p2), Gπ = Gp is, for suitable ε, a subgroup of O1(4, p

2, ε),
whose order we recall is p4(p4 − ε)(p4 − 1). Consulting [29, Th. 3.1], we see
that Gp = O1(4, p

2, ε) so long as we can rule out two remote alternatives.
First of all, it is conceivable that Gp ' H4 = [3, 3, 5]. But here it is easy

to check directly that H4 cannot be generated by reflections rj satisfying
the Coxeter-type relations inherited from [3, 5, 3], let alone the independent
relations induced by reduction modulo p.

Secondly, we must show that Gp is not isomorphic to some orthogonal
group O1(4, p, η), η = ±1, over the subfield GF (p). If this were so, then
Theorem 3.1 in [29] would actually imply that Gp is similar to O1(4, p, η)
under extension of scalars. More precisely, if L is an algebraic closure of K =
GF (p2), then there would exist some g ∈ GL(VL) with gGpg−1 = O1(4, p, η).
Using (11), we compute with respect to the new basis {ci} = {g(bi)} for VL.
Thus the reflection r̃i := grig

−1 satisfies

r̃i(cj) = g(bj +mijbi) = cj +mijci .

We conclude that the field of definition for Gp must always contain the sub-
field generated by the Cartan integers mij. In our case, m12 = τ 2 6∈ GF (p),
so that gGpg−1 cannot possibly be a group O1(4, p, η).

Having shown that Gp = O1(4, p
2, ε), we next determine ε. From [16, Th.

8.5(a)] we have

( δ | π )D = (N(δ) | p ) = (−11 | p ) = (−1 | p )( 11 | p ) = ( p | 11 ) ,

by (rational) quadratic reciprocity. Since the non-zero squares (mod 11) are
1, 3, 4, 5, 9, we conclude that

ε :=

{
+1, if p ≡ 3, 12, 23, 27, 37, 38, 42, 47, 48, 53 mod 55;
−1, if p ≡ 2, 7, 8, 13, 17, 18, 28, 32, 43, 52 mod 55.

Case 4: π = a + bτ , where N(π) = a2 + ab − b2 = q, where the rational
prime q ≡ ±1 mod 5; however, π is not an associate of δ = −(2 + 5τ).

We now have K = GF (q). An even easier appeal to [29, Th. 3.1] gives
Gπ = O1(4, q, ε). We need only determine ε = ( δ |π )D. Since a + bτ ≡
0 mod π, we may suppose τ = −a/b ∈ K. Thus

δ = −(2 + 5τ) ∼ −b2(2 + 5τ) ≡ 5ab− 2b2 mod π .
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By [16, Th. 8.5(a)], we obtain

ε = ( δ |π )D = ( (5ab− 2b2) | q ) = ( b | q )( (5a− 2b) | q ) .

Using the rational Legendre symbol, we can thus compute ε for any prime
π = a+ bτ .

It is possible to say when π and its conjugate π′ give opposite ε’s, so that
the corresponding orthogonal spaces have, in some order, Witt indices 1 and
2. This happens if and only if q is a square mod 11, since

( δ |π )D ( δ | π′ )D = ( (b(5a− 2b)(−b)(5a+ 7b)) | q ) = (−11 | q ) = ( q | 11 ) .

One notable instance here is π = δ′ = −7 + 5τ , which is relatively prime
to the discriminant δ. We have Gδ′ = O1(4, 11,−1), of order 1771440.

Case 5: π = δ = −(2 + 5τ).
This is the only case in which the orthogonal space V is singular. Now

K = GF (11) and τ = −2/5 = 4. We find that rad(V ) is spanned by
c = 7b0 + 3b1 + 2b2 + b3, and that V = rad(V ) ⊥ V3, where V3 is the non-
singular subspace spanned by b0, b1, b2. It is then not hard to see that

O(V ) ' V̌3 o (K∗ ×O(V3)) ,

where K∗ ' GL(rad(V )) and V̌3 is dual to V3. We observe that the abelian
group V̌3 ' K3 consists of all transvections

r(x) = x+ ϕ(x)c ,

where ϕ ∈ V̌3 (with V̌3 viewed as a subspace of V̌ fixing c). Now since every
rj fixes c, Gδ must be a subgroup of the pointwise stabilizer of rad(V ). In
fact, another calculation with GAP confirms that

Gδ = Ô1(V ) ' V̌3 oO1(V3) ,

which has order 113 · 11 · (112 − 1) = 1756920. Now consider the isometry
z ∈ G defined in (21). It is easy to check that z(c) ≡ c mod δ, so that

z = 1rad(V) ⊥ −1V3 ∈ Ô1(V ) acts as the central inversion in the group O1(V3)
for the icosahedral facet. Thus Gδ has a normal subgroup A isomorphic to
V̌3 o 〈z〉 and so of order 2 · 113. Using O1(3, 11, 0) ' PSL2(11) o C2 (see [1,
Th. 5.20]), we conclude that

G := Gδ/A ' PSL2(11) ,
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of order 660. Remarkably, G is also a string C-group. The resulting polytope
is the 11-cell independently discovered by Coxeter in [13] and Grünbaum in
[2]. Indeed, both r0r1r2 and r1r2r3 have period 5 in the quotient (see (21)),
and

P(G) = { {3, 5}5 , {5, 3}5 }

is the universal 4-polytope with hemi-icosahedral facets and hemi-dodecahedral
vertex-figures.

This finishes our investigation of the group [3, 5, 3]. Evidently a somewhat
similar analysis is possible for the group H = [5, 3, 5] with diagram

∆(H) =
1• τ2• τ2• 1•

and corresponding discriminant −1
16

(3 + 7τ) ∼ −(3 + 7τ) =: λ. Since N(λ) =
−19, we see that λ is also prime. We note only that the group Hλ for the
singular space V again has an interesting quotient. In fact,

H ' PSL2(19)

is the automorphism group for the universal regular polytope

P(H) = { {5, 3}5 , {3, 5}5 } ,

with hemi-dodecahedral facets and hemi-icosahedral vertex-figures. This is
the 57-cell described by Coxeter in [12].

With the exception of the 11-cell and 57-cell, the polytopes described here
can be viewed as regular tessellations on hyperbolic 3-manifolds (see [27, 6J]).
Moreover, the two exceptions are the only regular polytopes or rank 4 (or
higher) with automorphism group isomorphic to PSL2(r) for some prime
power r (see [23]). For related work see also [19, 20, 22].
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9 Exercises

Exercises on Section 1

1. Suppose that P is an n-polytope with the property that any two faces
F, F ′ of P have a least upper bound (lub), which we might denote
F ∨ F ′. Show that

(a) any subset of faces of P has a lub.

(b) any two faces F, F ′ have a glb (greatest lower bound). Note that
P is therefore a (combinatorial) lattice.

(c) any subset of faces of P has a glb.

(d) For fixed 0 6 k 6 j, each j-face F is the sup of all incident k-
faces. In particular, each face F of P is uniquely determined by
its vertex-set

v(F ) := {H : H 6 F and rank(H) = 0}

Exercises on Section 2. Generally V will be a finite dimensional vector
space over the field K, and V̌ will be its dual space. Sometimes you may
need to assume the characteristic of K is not equal 2. That is usually the
case when we speak of ordinary reflections.

Typically G will be a (not-necessarily finite) subgroup of GL(V ).

1. Prove Lemma 2.1(e). (Of course, I recommend you check all parts of
that Lemma.)

2. Recall that G is (a) irreducible if it leaves invariant no proper, non-zero
subspace of V ; (b) completely reducible if any G-invariant subspace U
of V has a G-invariant complement W in V . Thus G irreducible implies
G is completely reducible.

It is known (Maschke’s Theorem) that a finite group G is completely
reducible if K has characteristic 0. Show that this may fail if K has
characteristic p > 0.

3. Suppose that G is an irreducible subgroup of GL(V ) and is generated
by reflections (of ordinary period 2). If G also leaves invariant a non-
zero bilinear form x · y, show that x · y must in fact be symmetric and
non-singular.
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4. Suppose G is a group generated by reflections rj(x) = x+ϕj(x)aj, 0 6
j 6 n − 1, whose roots {aj} form a basis for V . Show that G is
isomorphic to a group of matrices over the subfield of K generated by
the entries of the Cartan matrix N .

5. Let a0, a1, a2 be the standard basis (of column vectors) for V = K3,
where char(K) 6= 2. Let G = 〈r0, r1, r2〉 be the group generated by
reflections rj(x) = x+ ϕj(x)aj, 0 6 j 6 2, with Cartan matriX −2 1 4

1 −2 1
1 1 −2

 .

(a) Identify the group G when K = R, and show that G does not
leave invariant any non-zero symmetric bilinear form on V = R3.

(b) Characterize those fields K over which G does leave invariant such
a form.

6. The group G is imprimitive if V = V1 ⊕ · · · ⊕ Vr is the direct sum of
proper, non-trivial subspaces Vj which are permuted amongst them-
selves by each g ∈ G. To avoid trivial examples, we will also assume
that G is irreducible on V . If G is not imprimitive, then we say G is
primitive.

(a) Prove that G acts transitively on the Vj’s.

(b) Suppose G is generated by reflections. Prove then tha dim(Vj) = 1
for each j. Also prove that G has a representation by monomial
matrices. matrices.

Exercises on Section 5

1. Verify the useful calculation in (15).
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2. Show that the Coxeter group G with diagram

•

•

3
~~~~~~~

3 @@
@@

@@
@

•

4

is not crystallographic, i.e. that no lattice in V ' R3 is invariant under
the usual representation of G.

3. (Based on [25].) Suppose, as outlined in Sections 2 and 5, that G =
〈r0, . . . , rn−1〉 is a (linear) Coxeter group whose invariant symmetric
bilinear form is defined by setting

ai · aj := −2 cos
π

pij
, 0 6 i, j 6 n− 1.

Recall that a0, . . . , an−1 is some basis for real n-space V . The isometric
reflections

rj(x) = x− (x · aj)aj
then induce the standard faithful representation of the corresponding
abstract Coxeter group.

Now assume that G is crystallographic, meaning that G leaves invariant
some lattice

Λ = ⊕n−1j=0Zcj.
Here c0, . . . , cn−1 is a possibly different basis for V .

(a) Prove that G now acquires a basic system β = {tiai}. That is,
show that there exist ti > 0 which make each mij := −tj(aj ·ai)/ti
an integer.
Hint: let Λi := Λ ∩ Rai. Examine the structure of this set and
how it is transformed by the reflections.

Definition. Let bi := tiai and call Q(β) := ⊕n−1i=0 Zbi the root
lattice for β.

(b) Show that Q(β) is a G-invariant lattice.

(c) Show that each finite period pij, (i 6= j), must be 2, 3, 4 or 6.
Hint: ponder the integer mijmji.
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(d) Let A = [ai · aj] be the Gram matrix for the form;
and let disc := det(A) be its discriminant. Show that the Cartan
matrix M = [mij] has determinant (−1)ndisc. Thus our choice of
basic system has no effect on det(M).

Assume for the rest of this question that M is invertible.

Definition. Let

P (β) := {u ∈ V : ri(u)− u ∈ Q(β), for 0 6 i 6 n− 1}.

(e) Show that there exist w0, . . . , wn−1 ∈ P (β) such that

wj · ai = tiδij, 0 6 i, j 6 n− 1 .

(f) Show that P (β) is itself a G-invariant lattice. (It is called the
weight lattice for β).

Definition. For any G-invariant lattice K, let

K∗ := {u ∈ V : u− g(u) ∈ K, for all g ∈ G} .

(g) Observe that Q(β) ⊆ P (β) and Q(β)∗ = P (β).

(h) Given any G-invariant lattice K, show that there exists a basic
system γ such that Q(γ) ⊆ K ⊆ P (γ) and K∗ = P (γ).

Exercises on Section 6

1. Let G be the crystallographic Coxeter group with diagram

1• 4• 16• .

(a) Find δ ∈ GL(V ) which conjugates G to itself, swapping r0 and r2,
but fixing r1.

Now reduce modulo p.

(b) Explain why the corresponding polyhedron Qp is self-dual.

(c) Show that Q5 is isomorphic to great dodecahedron {5, 5/2}.
(d) Ignore the fact that p = 4 is a rather poor prime. Identify the

group G4 and the corresponding polyhedron Q4.
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Exercises on Section 7

1. In Section 7.4 we describe the regular cubical toroids with group Gp =
[4, 3n−3, 4]p. Investigate the non-prime toroid [4, 3, 4]4, whether it is
even polytopal, and how it depends on the choice of basic system for
G. See [33].

Exercises on Section 8

1. The rational integers Z form a subdomain of D = Z[τ ], of course. Thus
any Coxeter group G which is crystallographic in the usual sense of
Section 5 can just as well be considered to be a subgroup of GLn(D).

How does modular reduction work in such cases, say for a non-rational
prime π ∈ D?

2. Suppose G = [5, 5] is the Coxeter group with diagram

1• τ2• 1• .

Determine the structure of Gπ, for primes π ∈ D. In particular, what
polyhedron do you get if π =

√
5?

Other Exercises

1. Let G be the normalizer in F4 of the Sylow 3-subgroup. Show that
G can be interpreted as the automorphism group of a non-self-dual
regular polyhedron of Schläfli type {6, 6}. Is the F4 meaningful? (I
don’t know.) Use Gap or use a nice representation of F4, such as that
described in Section 7. You may want to refer to Michael Hartley’s
Atlas of Small Regular Polytopes in [18].

50



References

[1] E. Artin, Geometric Algebra, Interscience, New York, 1957.
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constructed from linear groups, European Journal of Combinatorics, 14
(1993), pp. 541–552.

[35] G. C. Shephard and J. A. Todd, Finite unitary reflection groups,
Canad. J. Math., 6 (1954), pp. 221–261.

[36] F. A. Sherk, A family of regular maps of type {6, 6}, Canad. Math.
Bull., 5 (1962), pp. 13–20.

[37] E. B. Vinberg, Discrete linear groups generated by reflections, Izv.
Akad. Nauk SSSR Ser. Mat. (=Math. USSR Izv. 5 (1971) 1083–1119),
35 (1971), pp. 1072–1112.

53



[38] A. Wagner, Determination of the finite primitive reflection groups over
an arbitrary field of characteristic not two i, Geom. Dedicata, 9 (1980),
pp. 239–253.

[39] , Determination of the finite primitive reflection groups over an
arbitrary field of characteristic not two ii, iii, Geom. Dedicata, 10 (1981),
pp. 191–203, 475–523.
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