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Recap: The general abstract Coxeter group with n generators is

F:<p07”'7pn—1 : (pzp])plj =4 Oglajgn_l%

where p; = 1 and 2 < p;; = pji < oo for all ¢ # j. Recall V' has real basis ay,...,a,-1 and
symmetric bilinear form specified by a; - a; :== —2cos7/p;;. Thus r;(z) = x — (z - a;)a;, and
G = (rg,...,mp_1) is a subgroup of O(V).

Theorem (Bourbaki, i.e. Tits?) [2, Ch. 5.3-5.4] The mapping p; — r; induces a faithful
representation R : I' — G. (By this ‘standard representation’ we often identify I' and G.)

Outline of Proof.

1. Step 1: prove that the p; have period 2, using the multiplicative group {£1}. From the
Substitution Theorem (von Dyck) mapping all p; — —1 induces an epimorphism

sgn: ' — {£1}.

2. Step 2: examine the length function I(y) (w.r.t generators po, ..., pn—1).
Definition: v € I' has length I(v) = k if v = p;, - - - p;, where k is minimal (so this word

in the generators is reduced).

Check: I(y) =0iff vy =1; I(y) = 1 if-f v = p; for some j; I(y) = I(v1);
I(ya) < U(7) + l(a) (triangle inequality).

Exercise: sgn(y) = (=1)!") for all y € T..

It follows that I(yp,;) = I(y) £ 1, for v € I' and any p;.

Remark: determining when +, when — is crucial; relates to how mirror for p; positioned
relative to the (geometrical) flag associated to 7.

3. Step 3: Introduce R : ' — G, which induces an action of I" on V: y(z) = R(v)(z), for
yel,xeV.

The fact that R is well-defined again uses the Substitution Theorem. Consider the relation
(pip;)P fori # j. The bilinear form induced in the plane spanned by a;, a; in V' is precisely
that which we encountered in Lecture 2, when we observed that the dihedral reflection
group I>(q) acts faithfully in a familiar way on R%. Now check that the period of r;r; is
determined by its action on the plane spanned by a;, a;.

4. Step 4: study the root system
® = Ui_jla;

(a union of orbits). Think of the set of all mirror normals; note all have same length /2.
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For b € ® write b = Z}:& t;a; and define
b>0ifallt; >0;eg a; >0,s0a; €D
b<0ifallt; <0;eg pjla;) =—a; <0,s0 —a; € .

** Not clear every root b € ® is in fact one of + or —!!

5. Step 5: 1st Delicate Proposition [2, Thm. 5.4]. Let v € I'. Then

l(yp;) > U(v) implies  ~y(a;) >0 (1)
lvpj) <l(y) implies ~(a;) <0

Note how both situations can happen. We are relating an abstract length function to
concrete geometry.

6. Step 6: Consequences of 1st Delicate Proposition.

(a) Every root is + or —: & = ®T L O~
(b) The representation R is faithful. Yes!
(c) T satisfies the intersection condition. For any I C {0,...,n — 1}, let
Lyi={pr : kel
(a parabolic subgroup of I'). Then for all 7, J C {0,...,n — 1}, we have
F[ﬂFJ:F]mJ. (2)

This is true for any Coxeter group, regardless of the topology of its diagram.

(d) I'yis a Coxeter group. Its diagram is the subdiagram on the node set I. Its intrinsic
length function [; = [ on I'; (a kind of convexity condition in the Coxeter complex).
In other words, one cannot reduce the word length by moving from 7 to {0, ..., n—1}.

7. Step 7: Proof of 1st Delicate Proposition

The first possibility, i.e.
l(vpj) > () implies v(a;) > 0,

actually forces the second. We use induction on k& = I(v). Since v = 1 if £ = 0, and
a; > 0, the case k = 0 is settled. So suppose k > 1 and v = p;, - - - p;, is a reduced word.
Then I(vp;,) = k—1 <k =1(7), so j # ix. Now look very carefully at the dihedral group
(rj,ri) =T, acting on the plane spanned by a; and a;,. In [2, 5.4] we see how to choose
a special coset representative in y(r;,r;, ). We look carefully at the length function ;)
in this dihedral group. The argument in the finite case p;;, < oo is finicky, but really just
amounts to seeking a shortest path along edges of the regular polygon.

8. Step 8: Read [2] or [1]. There is much, much more to learn here.
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