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Abstract

Every abstract 3-polytope M, in particular, every polyhedral map,
has a unique minimal regular cover, and the automorphism group of this
cover is isomorphic to the monodromy group of M. Here we demonstrate
that the situation for polytopes of higher rank must be very different: the
tomotope T is a small, highly involved, abstract uniform 4-polytope. It
has infinitely many distinct minimal regular covers.

1 Introduction

The monodromy group is a most useful tool when one tries to understand com-
binatorial properties of maps, such as coverings, automorphism groups, flag
orbits, stellations, and so forth; see [10, §3] and [8], for example.

Changing our structural viewpoint a little, we may consider polyhedral maps,
at least, to be abstract 3-polytopes. This paper arose as a by-product of a
wider effort [17] to understand basic combinatorial constructions for abstract
polytopes in all ranks. In this setting, the monodromy group already appeared
in [5] (as the image of the ‘flag action’).

One of our concerns is to understand how an n-polytope P, with no particu-
lar attributes of symmetry, can be covered by a regular n-polytope R. When P
has rank n = 3, there is a minimal such regular cover, intimately related to the
monodromy group of P. (This fact seems to be well-known, but we must refer to
[17] for an easy proof.) On the other hand, our attempts to extend the result to
higher ranks are thwarted by that best of all reasons, a counterexample. Thus
we come to the tomotope, a most peculiar uniform 4-polytope T , constructed
in Section 4 below. We shall prove in Theorem 5.9 that T has infinitely many
distinct and ‘incommensurable’ minimal regular covers.

We have given T its name as a small, and rather late, birthday present for
Tomaž Pisanski, in particular gratitude for his insights and enthusiasm. In fact,
Tomo himself suggested that Reye’s configuration might be hidden in T (see
Section 6).
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2 Abstract Polytopes and their Monodromy Groups

An abstract n-polytope P has some of the key combinatorial properties of the
face lattice of a convex n-polytope; in general, however, P need not be a lat-
tice, need not be finite, need not have any familiar geometric realization. An
important example for us will be the familiar tiling U of ordinary space by
regular octahedra and tetrahedra, the beginning of which is displayed in Fig-
ure 1. An indication that U is indeed an abstract uniform 4-polytope is that
each ‘flag’ has four entries, namely a mutually incident vertex, edge, triangle
and cell (octahedron or tetrahdron).

Next let us review some general definitions and results, referring to [13] for
details. An abstract n-polytope P is a partially ordered set with properties A,
B and C below. A pre-polytope need only satisfy the first two requirements:

A: P has a strictly monotone rank function with range {−1, 0, . . . , n}.

An element F ∈ P with rank(F ) = j is called a j-face; typically Fj will indicate
a j-face. Moreover, P has a unique least face F−1 and unique greatest face Fn.
Each maximal chain or flag in P therefore contains n + 2 faces. We let F(P)
be the set of all flags in P.

Naturally, faces of ranks 0, 1 and n− 1 are called vertices, edges and facets,
respectively.

B: Whenever F < G with rank(F ) = j − 1 and rank(G) = j + 1, there are
exactly two j-faces H with F < H < G.

For 0 6 j 6 n − 1 and any flag Φ, there thus exists a unique adjacent flag Φj ,
differing from Φ in just the face of rank j . With this notion of adjacency, F(P)
becomes the flag graph for P. Whenever F 6 G are incident faces in P, the
section

G/F := {H ∈ P |F 6 H 6 G} .

C: P is strongly flag–connected, that is, the flag graph for each section is con-
nected.

It follows that G/F is a (k − j − 1)-polytope in its own right, whenever F 6 G
with rank(F ) = j 6 k = rank(G). For example, if F is a vertex, then the
section Fn/F is called the vertex-figure over F .

The automorphism group Γ(P) consists of all order-preserving bijections on
P. We say P is regular if Γ(P) is transitive on the flag set F(P). In this case
we may choose any one flag Φ ∈ F(P) as base flag, then define ρj to be the
(unique) automorphism mapping Φ to Φj , for 0 6 j 6 n − 1. From [13, 2B]
we recall that Γ(P) is then a string C-group, meaning that it has the following
properties SC1 and SC2:

SC1: Γ(P) is a string group generated by involutions (sggi), that is, it is gen-
erated by involutions ρ0, . . . , ρn−1 which satisfy the commutativity relations
typical of a Coxeter group with string diagram, namely

(ρjρk)pjk = 1, for 0 6 j 6 k 6 n − 1, (1)
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where pjj = 1 and pjk = 2 whenever |j − k| > 1.

SC2: Γ(P) satisfies the intersection condition

〈I〉 ∩ 〈J〉 = 〈I ∩ J〉, for any I, J ⊆ {ρ0, . . . , ρn−1} . (2)

The fact that one can reconstruct a regular polytope in a canonical way from
any string C-group Γ is at the heart of the theory [13, 2E]. We will see later
that the monodromy group of P is always an sggi but might not be a string
C-group.

The periods pj := pj−1,j in (1) are assembled into the Schläfli symbol
{p1, . . . , pn−1} for the regular polytope P. We note that every 2-polytope or
polygon {p1} is automatically regular; its automorphism group is dihedral of
order 2p1.

There are various ways to relax symmetry and thereby broaden the class of
groups Γ(P). For example, we shall agree that any polytope of rank at most 2 is
uniform (as well as regular), then inductively define P to be uniform if its facets
are uniform and its symmetry group is transitive on vertices [2, 11]. Thus, the
abstract uniform polytopes P form a huge, perhaps untamable, class of mostly
unfamiliar objects, though certainly including all regular polytopes.

Next we describe some tools for describing how one polytope can cover an-
other.

Definition 2.1. [13, 2D] Let R and P be pre-polytopes, both of rank n. A
rap-map is a rank and adjacency preserving homomorphism η : R → P. (This
means that η induces a mapping F(R) → F(P) which sends any j-adjacent
pair of flags in R to another such pair in P.) A surjective rap-map is called
a covering; we then say R is a cover of P and write R → P. The cover R is
minimal (for P) if R 6= P and R → Q → P implies Q = R or Q = P.

Remark 2.2. Note that if P is flag-connected, as is the case for all polytopes,
then η : R → P must surjective, hence a covering. �

In order to understand how P arises by identifications in R, we modify
Hartley’s approach in [5] and instead exploit the monodromy group.

Definition 2.3. Let P be a polytope of rank n > 1. For 0 6 j 6 n−1, let sj be
the bijection on F(P) which maps each flag Φ to the j-adjacent flag Φj. Then
the monodromy group for P is

Mon(P) = 〈s0, . . . , sn−1〉

(a subgroup of the symmetric group on F(P)).
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Remark 2.4. It is easy to check that Mon(P) is an sggi. Intuitively speaking, a
relation sj1 · · · sjm = 1 in this group forces the corresponding type of flag chain
to close, regardless of the initial flag in such a chain. This in turn suggests
how P arises by identifications in some cover; we refer to [5] for more details.
Here we simply quote some easily proved results from [17]. The first of these is
verging on folklore. �

Proposition 2.5. Let R be a regular n-polytope with base flag Φ, automorphism
group Γ(R) = 〈ρ0, . . . , ρn−1〉, and monodromy group Mon(R) = 〈s0, . . . , sn−1〉.
Then there is an isomorphism Γ(R) ' Mon(R) mapping each ρj to sj.

Proposition 2.6. Let Q be an m-polytope whose vertex-figures are all isomor-
phic to a particular (m−1)-polytope P; and let Mon(Q) = 〈t0, . . . , tm−1〉. Then
Mon(P) ' 〈t1, . . . , tm−1〉. Furthermore, if P is regular, then Mon(Q)is a string
C-group.

Proposition 2.7. Suppose η : R → P is a covering of n-polytopes (or even
pre-polytopes). Then there is an epimorphism

η : Mon(R) → Mon(P)

(of sggi’s, i.e. mapping standard generators to standard generators).
Suppose also that η maps the flag Λ′ in R to the flag Λ in P. Then

(StabMon(R)Λ′) η ⊆ StabMon(P)Λ . (3)

Finally we have a converse to the previous result.

Proposition 2.8. Suppose that R and P are n-polytopes and that

η : Mon(R) → Mon(P)

is an epimorphism of sggi’s. Suppose also that there are flags Λ′ of R and Λ of
P such that

(StabMon(R)Λ′) η ⊆ StabMon(P)Λ . (4)

Then there is a covering η : R → P, which induces η as in Proposition 2.7.

Remark 2.9. If R is regular, then condition (3) or (4) is fulfilled automatically,
since all flags Λ′ are equivalent, with trivial stabilizer, in Γ(R) ' Mon(R) (see
Proposition 2.5). In such cases, a covering η : R → P induces an epimorphism

Γ(R) = 〈ρ0, . . . , ρn−1〉 → Mon(P) = 〈t0, . . . , tn−1〉

sending ρi to ti, for 0 6 i 6 n − 1. �
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3 Geometrical and Combinatorial Versions of Wythoff’s
Construction

With the above machinery in place, we can take a closer look at the uniform
tessellation U mentioned earlier. As a combinatorial object, this tessellation of
R3 is an abstract uniform 4-polytope (see Figure 1).

Figure 1: The start of the 4-polytope U , a uniform tessellation of R3.

A simple way to describe U is to first imagine Euclidean space R3 tiled
as usual by unit cubes. (Although this tiling is itself a regular 4-polytope,
we use it mainly as scaffolding for U .) Each cube has two inscribed regular
tetrahedra. Pick one in each cube, starting with the tetrahedron with vertices
O = (0, 0, 0), A = (1, 1, 0), B = (1, 0, 1), C = (0, 1, 1) in the standard unit cube,
then alternating thereafter as one passes between adjacent cubes. We thus get
the tetrahedral facets of U ; the octahedral facets tile what is left of R3. Every
vertex of U is surrounded by six octahedra and eight tetrahedra; each vertex-
figure is a cuboctahedron. (Compare [3, §4.7], where Coxeter describes U as a
quasiregular tessellation, with modified Schläfli symbol {3, 3

4}.)
Notice that the symmetry group Γ(U) contains the face-centred cubic lat-

tice generated by translations τ1, τ2, τ3 along the edges OA,OB, OC of the base
tetrahedron. The point group stabilizing vertex O is the octahedral group of
order 48 generated by reflections ρ1, ρ2, ρ3, whose mirrors are indicated in Fig-
ure 1, along with the mirror for a fourth reflection ρ0. These four reflections
generate Γ(U), and their mirrors enclose a tetrahedral fundamental region for
the action of Γ(U) on R3. In fact, Γ(U) is the (infinite) Coxeter group of type
B̃3. It is convenient to blur the distinction between the affine reflections ρj and
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their abstract counterparts in a presentation of Γ(U), as encoded in the diagram
in Figure 2.

Figure 2: The affine Coxeter group B̃3 ' Γ(U).

Recall [9, §6.5] that Γ(U) has these defining relations on its standard gener-
ators:

ρ2
j = (ρ0ρ2)2 = (ρ0ρ3)2 = (ρ2ρ3)2 = (ρ0ρ1)3 = (ρ1ρ2)3 = (ρ1ρ3)4 = 1 . (5)

Evidently Γ(U) is not a string C-group. Indeed, U is not regular, for it has two
kinds of facets and two flag orbits. Even though Γ(U) is not an sggi, it does
satisfy (2), as does any Coxeter group [9, Theorem 5.5]. This fact appears in
Proposition 3.2 below.

For future use, here we rewrite the generators of the translation subgroup:

τ1 = ρ1ρ3ρ1ρ2ρ1ρ3ρ1ρ0, τ2 = ρ1τ1ρ1, τ3 = ρ2τ2ρ2. (6)

The ringed node in Figure 2 is an ingenious decoration invented by Coxeter
[2] and is meant to encode Wythoff’s construction for U . The essential idea is
that each j-face of U lies in the same Γ(U)-orbit as a special j-face Fj , whose
stabilizer Σ(Fj) is a certain parabolic subgroup of Γ(U). This Σ(Fj) is generated
by the ρk’s corresponding to nodes in a subdiagram, which in turn consists of
a connected active part, which has j nodes including the ringed node, and
a passive part induced on all nodes not connected to the active part. For
example, there is one base vertex F0 = O in Figure 1; it has empty active part
and is fixed (passively) by Σ(F0) = 〈ρ1, ρ2, ρ3〉. The base edge F1 has vertices
O and A = (O)ρ0; the active part of Σ(F1) = 〈ρ0, ρ2, ρ3〉 is 〈ρ0〉. The base
equilateral triangle F2 has vertices OAB and Σ(F2) = 〈ρ0, ρ1〉 is totally active.
Finally, there are octahedral facets F3 with Σ(F3) = 〈ρ0, ρ1, ρ3〉, and tetrahedral
facets F ′

3 with Σ(F ′
3) = 〈ρ0, ρ1, ρ2〉. In this ‘geometrical’ version of Wythoff’s

construction, each basic face Fj is the convex hull of the Σ(Fj)-orbit of O.
Observe that general j-faces in the the Γ(U)-orbit of Fj correspond exactly to
right cosets of Σ(Fj).

We note that the description above must be adjusted a little to accommodate
other sorts of Coxeter diagrams, with arbitrary sets of ringed nodes. However,
the regular case works as expected: just ring one terminal node in a string
diagram [13, 1B]. We refer to [1] for a much broader look at the concrete ge-
ometrical aspects of Wythoff’s construction. Here we pursue instead a more
‘combinatorial’ version of the construction, motivated by our earlier discussion
but still tailored to our immediate needs.
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Definition 3.1. The uniform 4-polytope P = P(Γ) and its vertex-figure.
Suppose Γ = 〈ρ0, ρ1, ρ2, ρ3〉 satisfies at least the relations

ρ2
j = (ρ0ρ2)2 = (ρ0ρ3)2 = (ρ2ρ3)2 = (ρ0ρ1)p = (ρ1ρ2)q = (ρ1ρ3)r = 1 , (7)

as encoded in Figure 3a. Also suppose that Γ satisfies the intersection condition
(2) for I, J ⊆ {ρ0, ρ1, ρ2, ρ3}. Subject to verification of details (Proposition 3.2),
we define a 4-polytope P as follows.

The improper faces of P are two distinguished copies F−1 and F4 of Γ. The
proper faces of P are all right cosets of the special subgroups Fj defined here:

Rank j Face Type Subgroup
0 vertex F0 := 〈ρ1, ρ2, ρ3〉
1 edge F1 := 〈ρ0, ρ2, ρ3〉
2 p-gon {p} F2 := 〈ρ0, ρ1〉
3 facet of Schläfli type {p, q} F3 := 〈ρ0, ρ1, ρ2〉
3 facet of Schläfli type {p, r} F ′

3 := 〈ρ0, ρ1, ρ3〉

Incidence is defined (for faces of unequal rank) by non-empty intersection of
cosets.

Referring to Figure 3b, we define in similar fashion a 3-polytope Q from
the subgroup 〈ρ1, ρ2, ρ3〉. The base vertex and edge of Q are 〈ρ2, ρ3〉 and 〈ρ1〉,
respectively. There are two basic 2-faces: the q-gon corresponding to 〈ρ1, ρ2〉 and
the r-gon corresponding to 〈ρ1, ρ3〉. Again faces of unequal rank are incident in
Q if they have non-empty intersection as cosets in 〈ρ1, ρ2, ρ3〉.

(a) The 4-polytope P. (b) The 3-polytope
Q.

Figure 3: Wythoff’s contruction for the 4-polytope P and its polyhedral vertex-
figure Q.

In fact, P and Q really are polytopes. We refer to [16] for a proof of a
considerably more general version of Proposition 3.2.

Proposition 3.2. Suppose Γ satisfies the requirements of Definition 3.1. Then
P = P(Γ) is an abstract uniform 4-polytope with two facets of each type {p, q}
and {p, r} arranged alternately around each edge.

Γ acts faithfully as a group of automorphisms of P and equals the full auto-
morphism group of P if the two base facets are non-isomorphic.

Each vertex-figure of P is a copy of the uniform 3-polytope Q, which has a
pair of q-gons and r-gons alternating around each of its vertices.
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Remark 3.3. Certainly, Γ is the full automorphism group for P when q 6= r.
However, this can also be so when q = r. On the other hand, if the mapping
(ρ0, ρ1, ρ2, ρ3) → (ρ0, ρ1, ρ3, ρ2) induces an automorphism of Γ, then q = r, and
P is regular of type {p, q, 4}. In this case, Γ has index 2 in the full automorphism
group of P [16]. Uniform polytopes like these with regular facets are sometimes
called semiregular [11]. �

4 The Tomotope T
We can now construct the finite uniform 4-polytopes which are our main con-
cern. Each will be covered by the Euclidean tessellation U . The corresponding
automorphism groups are quotients of the Coxeter group B̃3, obtained by ad-
joining certain natural relations to those in (5). When applying Proposition 3.2,
we therefore take p = q = 3 and r = 4. In each case we have used GAP [4] to
verify the intersection condition and other details.

Example 4.1. Adjoin to (5) the relation which converts the second facet into
the hemioctahedron:

(ρ0ρ1ρ3)3 = 1 .

The resulting group Γ(Ut,ho) has order 192 but still satisfies the intersection con-
dition. The corresponding polytope Ut,ho is universal for assembling tetrahedra
and hemioctahedra in this uniform way, two each alternating around edges. It
has 4 vertices, 24 edges, 32 triangles, 8 tetrahedra and 8 hemioctahedra. Each
vertex figure is a cuboctahedron. The monodromy group Mon(Ut,ho) has order
73728 and is a string C-group of Schläfli type {3, 12, 4}. �

Example 4.2. Adjoin instead the hemicuboctahedron relation

(ρ2ρ1ρ3)3 = 1

to (5) to get a new group Γ(Uhc). In fact, Γ(Uhc) is isomorphic to Γ(Ut,ho), where
the latter group has new generators ρ0, ρ1, ρ2, ρ0ρ2ρ3. The resulting polytope Uhc

has 8 vertices, 24 edges, 32 triangles, 8 tetrahedra and 4 octahedra.
The new monodromy group Mon(Uhc) is a string C-group of type {3, 12, 4}

and order 73728. However, this group is not isomorphic to Mon(Ut,ho) as an
sggi. Indeed, the vertex-figure subgroup for Mon(Ut,ho) has order 2304 and is a
double cover of the corresponding subgroup of Mon(Uhc). �

Example 4.3. The tomotope.
Adjoin to (5) the two relations which create hemioctahedra and hemicuboc-

tahedra:

(ρ0ρ1ρ3)3 = (ρ2ρ1ρ3)3 = 1 . (8)

The new group Γ(T ) has order 96 and again satisfies the intersection condition.
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Definition 4.4. We shall call the resulting uniform 4-polytope T the tomotope.

The tomotope has 4 vertices, 12 edges, 16 triangles, 4 tetrahedra and 4
hemioctahedra. Each vertex-figure is a hemicuboctahedron. The group Γ(T )
acts faithfully on the edges of T , so we have this permutation representation:

ρ0 = (5, 10)(6, 9)(7, 12)(8, 11)
ρ1 = (1, 6)(2, 5)(3, 8)(4, 7)
ρ2 = (5, 9)(6, 10)(7, 11)(8, 12)
ρ3 = (5, 8)(6, 7)(9, 12)(10, 11)

The new monodromy group Mon(T ) = 〈s0, s1, s2, s3〉 has order 18432 =
73728/4 and again type {3, 12, 4}. However, the intersection condition on
Mon(T ) fails. Indeed, for z = ss1s2s1s2s1

2 we find that

zs0 = zs3s2s3 6∈ 〈s1, s2〉 .

The earlier monodromy group Mon(Ut,ho) was a string C-group; we may use
its central quotient to manufacture a minimal regular cover for T .

Proposition 4.5. Let Z be the centre of Mon(Ut,ho). Then |Z| = 2, and Γ2 :=
Mon(Ut,ho)/Z is a string C-group of order 36864 and Schläfli type {3, 12, 4}.
The corresponding regular 4-polytope R2 has facet type {3, 12} ∗ 576 and vertex-
figure type {12, 4} ∗ 1152b (referring in each case to the census in [6]).

Moreover, R2 is a minimal regular cover for the tomotope T .

Proof. Using GAP we easily check that there is a 2 : 1 epimorphism Γ2 →
Mon(T ) (of sggi’s). But Γ2 = Γ(R2) ' Mon(R2) by Proposition 2.5. This
gives a map Mon(R2) → Mon(T ), which by Proposition 2.8 induces a covering
η : R2 → T . On the other hand, any regular cover trapped between R2 and
T would, by Proposition 2.7, induce a corresponding sequence of maps on the
monodromy groups. Since |Γ2| = 2·|Mon(T )|, and Mon(T ) fails the intersection
condition, this forces an intermediate 4-polytope to coincide with R2.

�

4.1 Aside: visualizing the tomotope

To visualize the tomotope T imagine a core octahedron with 8 tetrahedra glued
to its faces, suggesting the stella octangula. Next imagine this complex inscribed
in a 2 × 2 × 2 cube and from that make toroidal-type identifications. Finally,
we further identify antipodal faces of all ranks to get T . In Figure 4 you can
see the 4 vertices, 4 = 8/2 tetrahedra and 1 hemioctahedron in the core. The
other three hemioctahedra are red, yellow and green, and ‘run around’ the belts
of those colours. For example, before making identifications, we may split a red
octahedron into four sectors around a vertical axis of symmetry, then fit these
into four red slots, two of which are visible in Figure 4. In this way we fill out
the 2 × 2 × 2 cube before the final antipodal identifications.
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Figure 4: The tomotope T .

5 Toroidal Covers of T
Since the tomotope T was constructed as a quotient of the uniform Euclidean
tessellation U , it is natural to ask whether other quotients of U provide covers
of T .

Proposition 5.1. Let U be the uniform tessellation of R3 described above; and
let Γ = Γ(U) be its symmetry group (see Figure 2). Suppose Σ is a subgroup
of the translation group 〈τ1, τ2, τ3〉 of Γ, such that each orbit of Σ meets each
proper section of U in at most one face.

Then the quotient Q = QΣ := U/Σ is a (toroidal) 4-polytope, still with
regular octahedral and tetrahedral facets, two each alternating around each edge.

Furthermore, the monodromy group Mon(Q) is a string C-group of type
{3, 12, 4}.

Proof. It is clear on geometrical grounds that Q really is a polytope with
the indicated properties, although we should use the modifier ‘toroidal’ only
when the generators of Σ span R3. For a more rigorous proof we can refer
to Proposition 2D9 in [13]; the indicated restrictions on Σ are exactly what is
needed there.

It remains to verify the intersection condition for Mon(Q) = 〈t0, t1, t2, t3〉.
From Proposition 2.6, we have 〈t1, t2, t3〉 ' Mon(P), where the cuboctahedron P
is isomorphic to the vertex-figure at each vertex of Q. Applying Proposition 2.6
again to P itself, where every vertex-figure is a 4-gon, we find that 〈t1, t2, t3〉
is a string C-group of type {12, 4} and order 2304. The corresponding regular
3-polytope P̃ is the minimal regular cover of P [7]. The cuboctahedron is,
of course, orientable when considered as a spherical map; the triangles in a
barycentric subdivision of the surface can be coloured alternately black and
white. It follows that any relation tj1 · · · tjm = 1 in the generators t1, t2, t3 must
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have even length. The words of even length therefore constitute a subgroup of
index 2 in 〈t1, t2, t3〉; let us call such elements ‘even’ and those in the other coset
‘odd’. Note that P̃ is itself orientable.

To prove that Mon(Q) is a string C-group we need only show for k = 0, 1, 2
that g ∈ 〈t0, . . . , tk〉 ∩ 〈t1, t2, t3〉 implies g ∈ 〈t1, . . . , tk〉 [13, 2E16(b)]. For such
g and any flag Φ of Q, both Φ and Φg have the same proper faces of rank
j ∈ {0, k + 1, . . . , 3}. If k = 0 this automatically means Φg = Φ for all flags Φ,
so g = 1.

Suppose then that k = 2 and fix a particular flag Φ, say with an octahedral
facet. Without loss of generality we may assume that g is an even element
of 〈t1, t2, t3〉; otherwise we could could take gt1 instead. Since Q is strongly
flag-connected, we have Φg = Φh for some h ∈ 〈t1, t2〉. Moreover, since g can
be written as an even word in {t1, t2, t3}, we have that h = (t1t2)m for some
m ∈ {0, 1, 2, 3}. (Note: since g ∈ 〈t1, t2, t3〉, g fixes the vertex in any flag of Q,
and in particular must act like a rotation around the vertex of the octahedron.)

Let Ψ be another flag of Q whose facet is an octahedron and let η be an
isomorphism between the octahedral facet of Φ to that of Ψ. Then

Ψg = (Φη)g = Φgη = Φhη = (Φη)h = Ψh.

Thus g acts like (t1t2)m on all flags with an octahedral facet. A similar argument
will show that there exists m′ ∈ {0, 1, 2} such that for each flag Λ whose facet
is a tetrahedron, we have Λg = Λm′

, where h′ = (t1t2)m′
.

Then g = (t1t2)l ∈ 〈t1, t2〉 on all flags of Q, where l = 4m′ − 3m. (We use
the fact that gcd(4, 3) = 1.) The remaining case k = 1 is similar and easier. �

Remark 5.2. The subgroup 〈t0, t1, t2〉 is also a string C-group and has type
{3, 12}. Taking Γ({3, 3}) = 〈α0, α1, α2〉 and Γ({3, 4}) = 〈β0, β1, β2〉, we find
that the mapping

〈t0, t1, t2〉 → Γ({3, 3}) × Γ({3, 4})
tj 7→ (αj , βj)

is a well-defined injection. The image group, which we denote Γ({3, 3})♦Γ({3, 4}),
is called the mix, or parallel product, of Γ({3, 3}) and Γ({3, 4}); see [21, 18] or
[17]. It has order 576 = 242 and consists of all (α, β) such that α, β are either
both even or both odd.

We note that the full translation subgroup of Γ(U) = B̃3 can be identified
with the group of all integer vectors 〈x, y, z〉 such that x + y + z is even. The
condition on the subgroup Σ in Proposition 5.1 is equivalent to demanding that
Σ contain none of the vectors 〈±1,±1, 0〉, 〈±2, 0, 0〉 for any choice of sign or
permutation of coordinates. In other words, the ball x2 + y2 + z2 6 4 should
meet Σ only at 〈0, 0, 0〉. �

Referring to Figure 1, we see that the translation τ1τ2τ
−1
3 has vector

−−→
OD =

〈2, 0, 0〉. For each integer k > 1, the relation

(τ1τ2τ
−1
3 )k = 1 (9)
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and its conjugates in Γ effectively induce toroidal identifications on the opposite
faces of a 2k× 2k× 2k block (of unit cubes). This family of toroids will be very
useful to us:

Definition 5.3. For k > 1, let Σ(k) be the normal subgroup of Γ generated by
(τ1τ2τ

−1
3 )k. Let Qk := QΣ(k) be the corresponding uniform toroid, as described

in Theorem 5.1. Let Wk := Γ/Σ(k) be the corresponding finite quotient group.

Lemma 5.4. For k > 1, the group Wk is presented by adjoining the extra
relation (9) to those in (5), and

|Wk| = 24 · (2k)3 .

For k > 1, the polytope Qk has 4k3 vertices, 24k3 edges, 32k3 triangles, 8k3

tetrahedra and 4k3 octahedra; and Mon(Qk) is a string C-group. When k = 1,
Q1 is merely a pre-polytope and Mon(Q1) is not a string C-group. Moreover,
|Mon(Q1)| = 36864, and there is a 2 : 1 epimorphism

Mon(Q1) → Mon(T )

(of sggi’s).

Proof. Since B̃3 ' Γ, we may as well reason geometrically. The toroid Qk

contains (2k)3 unit cubes, each of which contains 24 = 48/2 copies of the
fundamental simplicial domain for B̃3. Each unit cube contains exactly one
tetrahedron, as well as half an octahedron.

The details concerning Mon(Qk) follow at once from Theorem 5.1, when
k > 1, and by explicit calculation in GAP when k = 1. �

Remark 5.5. With the help of Figure 1, it is easy to check that Σ(k) is generated
by (τ1τ2τ

−1
3 )k, (τ2τ3τ

−1
1 )k and (τ3τ1τ

−1
2 )k.

The above construction of Qk is essentially geometric. On the other hand,
when k > 1, the group Wk, with the four induced involutory generators, satisfies
(2) and hence the requirements of Proposition 3.2 (replacing Γ by Wk). The
resulting abstract regular polytope is, of course, isomorphic to Qk. �

Definition 5.6. For k > 1, let Pk be the regular 4-polytope whose automorphism
group is Mon(Qk).

In order to connect the regular polytopes Pk to the tomotope T , we shall
exploit an element in the monodromy group, which vividly illustrates the dif-
ference between monodromy and symmetry.

Definition 5.7. In any sggi 〈t0, t1, t2, t3〉, let

w = t0(t1t2)6t0t1t3t2t3(t1t2)6t3t2t3t1(t1t2)6 .

It will be convenient to abuse notation by simultaneously letting w refer to this
element in several sggi’s of rank 4.

12



Lemma 5.8. (a) In Mon(Qk) = 〈t0, t1, t2, t3〉, the element w fixes each flag
containing a tetrahedral facet. On the other hand, if Φ is a flag with an octahe-
dral facet, then w shifts Φ in exactly the same way as the translation from the
vertex X of Φ to the opposite vertex Y in that equatorial square of the octahedron
which contains the edge of Φ.

(b) The element w has period k in Mon(Qk). In particular, w = 1 in
Mon(Q1).

(c) There is an epimorphism η : Mon(Qk) → Mon(Q1) of sggi’s whose kernel
is the elementary abelian group of order k6 generated by

w, t0wt0, t1t0wt0t1, t3wt3, t3t0wt0t3, t3t1t0wt0t1t3 . (10)

(d) The group Mon(Qk) has order 576 · (2k)6 = 36864 · k6.

Proof. Ponder a model or Figure 1. Notice that w ‘disconnects’ the octahedral
flags and independently maps them in the three orthogonal directions parallel
to the diagonals of an octahedron. Now, in the group Mon(Qk), translations
still commute and the basic translation

−−→
OD from Figure 1 has period k. Thus

the elements in (10) commute, have period k and generate a subgroup N of
order k6 in Mon(Qk).

It is clear from our construction that Qk covers Qm whenever m divides k.
Proposition 2.7 then gives an epimorphism Mon(Qk) → Mon(Qm).

For η : Mon(Qk) → Mon(Q1), we observe that N ⊆ ker(η). To show equality
we take f ∈ ker(η) and fix a hemioctahedral flag Φ. Since f ∈ ker(η), Φ is fixed
modulo the action of the translation subgroup Σ(k) on Qk. Thus there exists
τ ∈ Σ(k) such that Φf = Φτ . But Φτ = Φh for some h ∈ 〈w, t0wt0, t1t0wt0t1〉,
so Φfh−1

= Φ. Notice that we can and do choose an h which fixes all tetrahedral
flags Λ′.

But the action of Mon(Qk) on flags commutes with that of the automor-
phism group Wk, so for any hemioctahedral flag Φ′ = Φγ, γ ∈ Wk, we have
(Φ′)fh−1

= Φ′ . Similarly there exists g ∈ 〈t3wt3, t3t0wt0t3, t3t1t0wt0t1t3〉 such
that (Λ′)fg−1

= Λ′ for all tetrahedral flags Λ′. Now g fixes all hemioctahedral
flags.

But gh = hg, so that fh−1g−1 = 1 in Mon(Qk) and f = gh ∈ N . This
proves that N = ker(η) has order k6. Part (d) follows from Lemma 5.4. �

Theorem 5.9. Let p, q > 1 be coprime odd integers. Then the tomotope T
has minimal regular covers Rp and Rq, neither of which covers the other or the
regular cover R2 from Proposition 4.5.

Proof. As in the proof of Lemma 5.8, we have Mon(Qp) → Mon(Q1) →
Mon(T ). The string C-group Mon(Qp) ' Γ(Pp) therefore provides a regular
cover Pp for T , by Proposition 2.8. Hence there must exist some minimal
regular cover, say Rp, satisfying Pp → Rp → T . Likewise we have a minimal
regular cover Rq.

Now suppose Rp and Rq cover some regular polytope R, which in turn
covers T . Then Mon(Pp) and Mon(Pq) both cover Mon(R) ' Γ(R); since
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gcd(p, q) = 1, it follows from Lemma 5.8 that the special element w = 1 in
Γ(R). From Definition 5.7 we have that

t3t2t3(t1t2)6t3t2t3 = t1t0(t2t1)6t0(t2t1)6t1

holds in the string C-group Γ(R). Since the intersection condition holds here,
we must have

t1t0(t2t1)6t0(t2t1)6t1 ∈ 〈t0, t1, t2〉 ∩ 〈t1, t2, t3〉 = 〈t1, t2〉 .

Mapping now to Mon(T ) we conclude that

z := t0(t2t1)6t0 ∈ 〈t1, t2〉 .

But this is false by direct calculation. Indeed, z fixes all tetrahedral flags in
T , yet acts like the reflection t1t2t1 on any hemioctahedral flag. This is a
contradiction, since an element of the dihedral group 〈t1, t2〉 cannot act on
different flags of the dodecagon {12} in both even and odd ways.

Certainly Rp cannot cover Rq or vice versa. For similar reasons, neither
of these regular polytopes can cover R2, since gcd(2, p) = 1 but w 6= 1 in
Γ2 = Γ(R2). �

It is clear now that the tomotope must have infinitely many distinct minimal
regular covers Rp. In fact, it seems likely from the computational evidence that
Rp = Pp, in other words, the regular cover arising from Definition 5.6 is actually
minimal. But we will leave the investigation here.

Surely this sort of multiplicity of minimal regular covers for the tomotope is
typical of polytopes having rank at least 4. The uniqueness of such covers for
polytopes of lower rank is welcome but atypical.

5.1 Another aside: a brief detour into crystallography

We have observed that the Coxeter group B̃3 ' Γ(U) leaves invariant the face-
centred cubic lattice and so is rightly called crystallographic. This enables a
faithful representation in GL4(Z) in which the generators appear as

ρ0 =


−1 0 0 0

1 1 0 0
0 0 1 0
0 0 0 1

 ρ1 =


1 1 0 0
0 −1 0 0
0 1 1 0
0 2 0 1



ρ2 =


1 0 0 0
0 1 1 0
0 0 −1 0
0 0 0 1

 ρ3 =


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 −1


(see [14] or [9, §6.6]).
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Now reduce the infinite group B̃3 modulo an integer r > 2 and call the
resulting finite group Mr. Since the new generators still have period 2, we keep
calling them ρj . Once one has the basic translations τj under control, it is easy
to explicitly calculate group orders and other details. For odd k > 1, we find
that the earlier group Wk ' M2k; and for even k > 1, Wk is a 2 : 1 cover of
M2k.

The most pertinent case, however, is r = 2. (Now the ρj are transvections
rather than reflections.) We find that M2 has order 96 and is a semidirect
product Z4

2 o S3. In fact, reduction modulo 2 kills most of the translation
subgroup of B̃3 and collapses the periods of ρ0ρ1ρ3 and ρ2ρ1ρ3 from 6 to 3.
Therefore M2 ' Γ(T ), and we have reconstructed the automorphism group of
the tomotope in another natural way.

6 Reye’s Configuration

The incidence information for the faces of the tomotope is summarized in Fig-
ure 5. The face-numbers for ranks j = −1, 0, 1, 2, 3, 4 are indicated inside the
circular nodes, reading left to right. The subscripts give incidence numbers for
faces of adjacent rank. For example, there are 12 edges and 4 vertices; each
edge lies on 2 vertices and each vertex on 6 edges (one for each 0-face of the
hemicuboctahedron). As a simple check, we note that 4 · 6 = 12 · 2.

Figure 5: Incidence diagram for the tomotope T .

To understand the finer detail of the incidence structure, we envision the
Hasse diagram for T as a graph and take the subgraph Ij,j+1 on faces of ranks
j and j + 1, for −1 6 j 6 3. Trivially, I−1,0 = K1,4 (a complete bipartite
graph), whereas I3,4 = K4+4,1. For j = 0, we note that each vertex of T is
joined by two edges to each other vertex, so that the 1-skeleton of T could be
denoted K

(2)
4 ; thus I0,1 is the subdivision graph of K

(2)
4 . Since every triangle

lies between a tetrahedron and hemioctahedron, we see that I2,3 is likewise the
subdivision graph of K4,4. For j = −1, 0, 2 or 3, it is actually easy to reconstruct
the relevant portion of the Hasse diagram from Ij,j+1.

It was Tomo who directed our attention to the really interesting case I1,2.
Following [15] we can call I1,2 the medial layer graph for T . Tomo noticed that
the configuration parameters (124, 163) are exactly those for the well-known
Reye’s configuration. Is there a connection?
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Recall that Reye’s configuration K involves lines and points in ordinary real
projective space. (See [19] for pictures and related obstructions to drawing K
in the plane.) We may take the 16 lines of K to lie along the 12 edges and 4
diagonals of a cube; the 12 points of K are the vertices and centre of the cube,
together with the 3 points at infinity from the parallel classes of edges of the
cube. Each point therefore lies on 4 lines, each line on 3 points.

To see that the edges and triangles of the tomotope are arranged in exactly
the same way, we need some notation. Label the hemioctahedra 1, 2, 3, 4 and
the tetrahedra −1,−2,−3,−4. The triangular faces of T can then be identified
with the 16 ordered pairs (a,−b), with a, b ∈ J := {1, 2, 3, 4}. After inspecting
a model or Figure 4, we find that we can label the edges of T by the symbols
Xe, where X is a 2-subset of J and e = + or −. An edge X− is incident with
the four triangles in X × (−X); an edge X+ is incident with the triangles in
X × (−Xc), where Xc is the complement of X in J . It is easy to check that
triangle (a,−b) really is incident with three edges, all with e = − when a = b,
otherwise one with e = − and two with e = + when a 6= b.

With a little patience, one can label the points and lines of K with the same
symbols and according to the same rules. This gives us most of

Proposition 6.1. The medial layer graph I1,2 for T is the Levi graph for
Reye’s configuration K. The automorphism group K for I1,2 has order 576 and
is a split extension of the tomotope group Γ(T ) by a dihedral group of order 6.

Proof. We compute the group K using GAP and the subsidiary packages
GRAPE and naughty [20, 12]. Since Γ(T ) acts faithfully on edges of T , it must
embed into K. �

Remark 6.2. Recall that the Levi graph for a point-line configuration is just the
incidence graph on the elements of the configuration. The automorphism group
of this graph is sometimes called the group of the configuration itself. It would
of course be nice to have a more insightful explanation for why the tomotope
contains Reye’s configuration.

The group K is not isomorphic to the facet group of type {3, 12} and order
576 which appears in the monodromy group Mon(T ). �
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