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One morning an acorn awoke
beneath its mother and declared,

“Gee, I’m a tree”.

Anon. (deservedly)
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THE TREE OF EUCLIDEAN GEOMETRY
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INTRODUCTION

Mathematics is a vast, rich and strange subject. Indeed, it is so varied that it is
considerably more difficult to define than say chemistry, economics or psychology. Every
individual of that strange species mathematician has a favorite description for his or her
craft. Mine is that mathematics is the search for the patterns hidden in the ideas of space
and number .

This description is particularly apt for that rich and beautiful branch of mathematics
called geometry. In fact, geometrical ideas and ways of thinking are crucial in many other
branches of mathematics.

One of the goals of these notes is to convince you that this search for pattern is
continuing and thriving all the time, that mathematics is in some sense a living thing. At
this very moment, mathematicians all over the world1 are discovering new and enchanting
things, exploring new realms of the imagination. This thought is easily forgotten in the
dreary routine of attending classes.

Like other mathematical creatures, geometry has many faces. Let’s look at some of
these and, along the way, consider some advice about doing mathematics in general.

Geometry is learned by doing: Ultimately, no one can really teach you mathe-
matics — you must learn by doing it yourself. Naturally, your professor will show the way,
give guidance (and also set a blistering pace). But in the end, you will truly acquire a
mathematical skill only by working through things yourself.

By the way, it is certainly fine to work in a group (i.e. with one or more friends), if
that suits you better. But always be very certain that you yourself understand everything
that the group has done.

One essential way to become involved in the course is to try many of the problems,
assigned or not. You can learn quite a lot and get great satisfaction from solving tricky
problems. Good assignments can be thought provoking and can help you learn by doing.

You can learn even more by conducting your own mathematical experiments. For
instance, at several points in this course you will benefit by making mathematical models,
say from paper, cardboard or other materials. When you do such activities, be neat, precise
and careful; try to understand what you see. A good test of your understanding is this:
can you explain what is going on to some friend in residence, your neighbour or even your
professor? If so, you have definitely learned something.

In some ways, mathematics is an experimental science. Mathematicians seldom dis-
cover new things in the manner in which they are typically portrayed in textbooks. Instead,
they make models, conduct numerical experiments (by hand or by computer), play games
or design ‘thought experiments’.

Geometry is a logical art: In mathematics, we don’t just look for patterns—we
1For your information, there are over 50,000 individuals listed in the directory of the major American

professional societies for mathematicians.
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try to explain them in a logical way, and thereby achieve a deeper understanding. Only
through this effort can we discover new things or solve harder problems.

For example, we might observe that in various triangles the three angles sum to 180◦.
Why? (We shall soon see the answer; but, in fact, there are useful and marvelous geometries
where the angles sum to something else! )

Or a decorative artist might find that there seem to be only seven mathematically
distinct ways to decorate a strip of ribbon. Why? (This is a much harder question—see
Section 22.)

You have likely had very little experience with mathematics as a logically growing
organism. In this course, you will attain just enough familiarity with the logical development
of geometry to appreciate the new material later in the course. Throughout this project,
we must keep a few things in mind.

Reading a mathematical text written in traditional theorem–proof style is by no means
the only or easiest way to learn the material. And the material itself was doubtless originally
discovered in a haphazard way, then reworked several times into some final, more ‘elegant’
form.2 A good analogy is the way that a poet may jot down some rough thoughts, then
work over them several times till some satisfactory verse appears.

On the other hand, there is much pleasure and understanding to be gained from the
effort required in following the logical growth of a mathematical subject. So for a few weeks
we will indulge in this, in a fairly gentle way.

One warning is due: geometry concerns the basic structures of our space and percep-
tion, so it stands to reason that the early stages of its logical development involve things
that hardly seem to need proof. Thus, you may well ask, ‘Why are we proving the obvious?’.
Be patient — we shall try to answer this very reasonable question. And soon enough, we
will encounter some beautiful things that are not at all obvious.

Geometry has its own language: One difficulty in coping with any mathematical
subject is the use of perfectly ordinary words in the strangest way. Yet good definitions lend
precision and economy to mathematical conversation. For the sake of understanding the
material, you must carefully learn and use our mathematical vocabulary. In mathematics,
creativity and precision live together.

2This is true of these notes, too.
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I have used these notes, in one form or another, in several attempts at teaching Math
3063. The notes are not at all static— frequently I adjust them to suit my own changing
interests, and of course to correct occasional errors. So what you have here is the version
which exists on February 7, 2005. If you do find errors or can think of improvements, let
me know!

I wish to thank Eleanor Perrin and Linda Guthrie, of the Department of Mathematics
and Statistics, for typing in LATEX the electronic version of this manuscript. Thanks are
due as well to Rita Monson for rendering many of the figures in xfig, thus allowing me
much more flexibility in revising the text.
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1 A Short History of Geometry

The word geometry derives from the ancient Greek meaning ‘measurement of the earth’. Yet
despite such ancient roots, geometry is a modern and thriving mathematical science. Indeed,
various basic ideas were known to several old civilizations; however, as a mathematical
discipline, geometry flourished especially in Greece, Babylon and Egypt some 2000 to 3000
years ago.

Like all mathematical sciences geometry has both an inductive and a deductive side.
When we assemble facts in an inductive manner, we first observe some natural phenomena,
then try to explain the facts by some general rule or theory. For instance, in ancient Egypt
the yearly inundation of the Nile wiped out the boundaries of landowners; thus simple
geometrical techniques were required by surveyors to re-establish property lines. It was
known, for instance, that a knotted rope with 12 equal segments would form a right angle
(an angle of 90◦)— see Figure 1.

B

A

C

B
B C

 A

Figure 1: Knotted ropes.

This fact, which we know to be true by Pythagoras’ theorem, since 52 = 32 + 42,
was initially just a natural observation.3 There was no general theorem for right triangles
(Pythagoras wasn’t yet born!) and there certainly was no ‘proof’ that ∠ACB = 90◦. Thus
with time a large but unsystematic body of geometrical facts was assembled by surveyors,
astronomers, navigators and other observers of nature.

The period 600 B.C. - 200 B.C. saw the flowering of a Greek civilization which was
in many ways unique. There was a deep and often mystical respect for philosophy, art,
mathematics and science. One of the major intellectual accomplishments of ancient Greece
was to organize and reduce to basic principles the accummulated mass of geometrical facts.
Many Greeks contributed to this effort; we mention only Pythagoras (ca. 548-495 B.C.),
Hippocrates (ca. 400 B.C.), Eudoxus (408-355 B.C.), Archimedes (ca. 287-214 B.C., and the
greatest of the ancient mathematicians) and Appolonius (ca. 260-170 B.C.). Most familiar
of all however is Euclid of Alexandria, who lived about 300 B.C.. Indeed, the ordinary
practical geometry of our world is called Euclidean geometry, although few of the actual
results in geometry are actually Euclid’s inventions. Instead, it was his genius to isolate the
crucial concepts in geometry and from them deduce, in a logical manner, other results of

3Historians of science disagree on just how much the Babylonians and Egyptians knew of this famous
theorem and whether Pythagoras was even the first to prove it. You should treat all statements in the
history of mathematics with some skepticism.
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greater and greater complexity and beauty. In short, Euclid developed the deductive side
of geometry.

Euclid assembled his geometrical results into a series of 13 short books called the
Elements.4 This is perhaps the most widely published textbook ever, though it has, of
course, been adapted many times to suit the tastes of scholars and educators over the
years. In fact, any high school geometry course is based ultimately on the Elements. The
authoritative version in English is listed as [8] in the References. In this set of 3 volumes,
Euclid’s actual text is fairly short but is accompanied by a very detailed (sometimes dry,
but often interesting) commentary by Sir T. L. Heath.

Often geometrical theorems are referred to by their place in the Elements. Thus
Pythagoras’ theorem is Euclid I - 47, which refers to the 47th result in Book I. Here is a
rough table of contents for the thirteen Books of the Elements:

Book Subject
I triangles
II rectangles
III circles
IV polygons
V proportion
VI similar figures
VII-X number theory - prime and perfect numbers
XI geometry of space
XII pyramids, cones, cylinders
XIII regular solids - cube, tetrahedron, octahedron, dodecahedron,

icosahedron.

4The word ‘book’ is somewhat misleading - most likely papyrus scrolls were used. It seems that the
Elements were written as general preparation for studies in philosophy, music, astronomy. Only a very elite
and special group of people could have been concerned with such studies. There were then no professional
mathematicians or scientists as we understand it. Of course, merchants, sailors and artisans would have
mastered the practical side of their crafts. But these were a very different group of people. Our view of
geometry and mathematics as a practical tool for the sciences is quite modern.
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2 The Deductive Method

In the logical development of geometry (or calculus or other branches of mathematics), each

definition of a concept involves other concepts or relations. Thus, the only way to avoid a

vicious circle is to accept certain primitive concepts and relations as undefined. Likewise,

the proof of each proposition (or theorem) uses other propositions; and hence to again avoid

a vicious circle, we must accept certain primitive propositions - called axioms or postulates

- as true but unproved. (I have here paraphrased a particularly apt description taken from

reference [3, pages 4 – 5].)

Example. Dictionaries don’t worry about vicious circles. From mine, here are some words

and definitions:

Word Definition
Love: to hold dear: cherish︸ ︷︷ ︸
Cherish: to feel or show affection︸ ︷︷ ︸ for

Affection: tender︸ ︷︷ ︸ attachment: fondness

Tender: fond; loving︸ ︷︷ ︸
!!!

Thus we encounter a vicious circle after four steps, since in order to define ‘love’, we ulti-

mately must use the word ‘love’ itself. Similarly, in logic or mathematics, a common but

deadly sin is circular reasoning, in which we ultimately assume what we want to prove.

In a nutshell, Euclid took certain primitive ideas, which everyone would be willing to

believe, and used them in a logical way as building blocks for more and more complicated

results. This is the essence of the deductive method in mathematics. The force of the

method is that if you believe the axioms (which are usually ‘obviously’ true), then you must

believe the theorems which follow (no matter how far-fetched).
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It is a wonderful fact indeed that many unsuspected results can be proved on the basis

of a certain number of ‘obvious’ assumptions. Of course, these axioms must not contradict

one another. And if there are fewer axioms rather than very many, we should be better

able to understand what makes our mathematics work.

Even so, you still might ask, “Why prove anything - why not assume everything?”.

The answer is that many useful facts are not at all obvious. I’m willing to bet that you

wouldn’t guess Pythagoras’ theorem without any hints; however, you might well invent a

proof or even discover the theorem in a mathematical way, that is, by working from simple

to more complicated results in a logical manner. In fact, we will do this in a later section.

To get some idea how basic concepts lead to more intricate situations, study the tree of

Euclidean geometry on page 3.

In summary, we shall isolate the truly basic structures of the geometrical world,

ignoring its less important properties. We shall then build on this using the deductive

method. We might, if we are lucky, discover results which we would never otherwise guess.

After a while, we shall employ our mathematical tools to examine structures and patterns

in art and nature.
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3 The Building Blocks

3.1 Choosing Axioms

We must start somewhere if we are to build up geometry in a logical manner; unfortunately,

however, it’s not at all clear where to begin. Euclid made an excellent attempt, although

(not surprisingly) modern mathematicians - such as Pasch, Peano, and Hilbert in the 19th

century - have found and corrected several of Euclid’s oversights. Indeed, if we permit no

unstated assumptions, then we must have axioms which justify even obvious statements

such as this:

“If AB = CD and CD = EF , then AB = EF”

A

B

C

D

E

F

Figure 2: Congruent segments.

The modern list of axioms for geometry is thus long and rather difficult to work with,

since it concerns such basic ideas. Don’t worry! We shall cheat by simply putting aside and

ignoring some of the more common sense ideas. Let’s lump together these basic things and

call them foundations.

It’s more important to point out and select the really crucial building blocks as axioms.

We then use brainpower to glue these blocks together, thereby constructing bigger and more

exotic structures (called theorems). Later on, we shall require a new type of building block,
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since some structures just cannot be built from our supply of simple bricks! Finally, when

our edifice is nearly complete we will be better able to look back and see what sort of

assumptions are hidden in the foundations.

(more axioms, which 
we treat as matters of
common sense)

Brain Power
for energy

(axioms - like s.a.s.)

Foundations

Unexpected truths 
(Theorems, like

Pythagoras)

Major Building Blocks

undiscovered
still

Geometry 

Figure 3: Flowchart for mathematical thinking.

If you do want to read the detailed story, you should consult [12], [14], or [3, chs.1,12,15].

These are challenging mathematical presentations, well worth the effort required for mas-

tery. For now, you can get a good idea of what is involved by reading Section 10.
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3.2 Some Simple Geometrical Objects

We shall start with a clean slate; so we don’t yet know anything about the angles in a

triangle, the area of a circle, etc. In short, we must obey the following law:

Never use any ‘substantial’ fact which has

not yet been stated or proved.5

Now let’s examine some simple objects and ideas. We may take it as obvious that through

any two points A and B (note the capitals) we can draw exactly one straight line, denoted

AB or c (lower case for lines). This line can be extended in either direction:

c

A

B

A

B

C

(a) (b)

Figure 4: Lines and triangles.

We can also draw a real triangle, denoted 4ABC, on a sheet of paper (Figure 4

(b)). The thickness of its edges or vertices is often unimportant; for instance, if the triangle

represents a metallic plate in some machine, then the lengths AB, BC and CA can be

tooled to a desired accuracy. Thus, we may safely suppose that a mathematical triangle

4ABC lies on an infinitely thin page (a plane) and has edges (like AB) and vertices (like

A) with no thickness.
5Just what is ‘substantial’ is a matter of judgement. There is no avoiding this - only with some experience

will you be able to judge what can be assumed and what cannot.
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An angle, such as ∠ABC, is the figure formed by two segments (or perhaps rays) BA

and BC emanating from a point B, called the vertex:

A

B C

A

B

C

Figure 5: Angles and rays.

A straight angle is formed when A, B and C are consecutive points on a straight line:

A C A

B

C

M

B

(b)(a)

Figure 6: Straight and right angles.

In Figure 6 (b) the ray BM divides (or bisects) the straight angle ∠ABC into two

equal angles: ∠ABM = ∠MBC. We define a right angle as either one of these two equal

angles and further say that the line MB is perpendicular to the line AC (written MB ⊥ AC).

To measure lengths we use a unit of measurement such as inches or centimeters.

Likewise, to measure angles we require a unit such as the degree, which is one of the 180

equal parts into which a straight angle may be divided. Thus every straight angle has 180◦,
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and we simply write ∠ABC = 180◦ in Figure 6. Consequently, every right angle has 90◦.

This definition of ‘degree’ is merely a convenience; after all we could define a degree as

1/50th of a straight angle, in which case a right angle would have 25◦. Notice that we must

not yet use radian measure, since it involves π and therefore the circle, about which we still

know nothing! (See problem 9c on page 195.)

3.3 Our First Theorem and Proof

We now prove our first simple theorem using these basic ideas. We shall refer to theorems

by convenient abbreviations, such as v.o.a.

Theorem 3.1 (v.o.a) Vertically opposite angles are equal: ∠ABC = ∠EBD below.

A

B

EC

D

Figure 7: Vertically opposite angles.

Proof: Since ∠ABE is a straight angle,

∠ABE = 180◦ = ∠ABC + ∠CBE.

Likewise ∠CBD = 180◦ = ∠EBD + ∠CBE. Thus by subtracting these quantities

we conclude ∠ABC = ∠EBD. //
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Some Remarks:

(a) Note that // indicates the end of the proof. The aim of a proof is to convince

in a logical and clear way. It may be helpful, as in some high school courses, for you to

put down a long list of steps with a separate column of justifications. But this is not at all

required.

(b) Draw two line segments crossing at the point B, which is the midpoint of each seg-

ment. Let’s call this figure a cross. Now put your pencil tip at B and turn your page through

half a turn: note that the cross is unchanged in appearance. The upshot of Theorem 3.1 is

that a cross is symmetrical under a 180◦ rotation.

3.4 Some Start-up Exercises

Most problems require some sort of proof, which can and should be brief and precise – the

main goal is to clearly express a convincing argument. Clear and neat diagrams are very

helpful.

For the preliminary exercises below, use only the simple ideas covered up to and

including this section in the Notes. Sometimes in these Notes, you may need to refer to a

problem solved earlier.

1. If two straight lines intersect, the bisector of any one of the angles, when produced

bisects the vertically opposite angle.

2. If two straight lines intersect, the bisectors of two vertically opposite angles form one

straight line.
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3. AEB and CED are two intersecting straight lines. Prove that the bisector of ∠AED

is perpendicular to the bisector of ∠DEB.

4. OP, OQ, OR, OS are rays in cyclic order about a common vertex O. Suppose

∠POQ = ∠ROS and ∠ROQ = ∠SOP . Prove that PO, OR and also QO, OS are

in the same straight line.

3.5 The First Big Axiom

Next we must find some simple, believable facts about our geometrical objects. One of these

facts, which seems very reasonable when you look at two identical cardboard triangles, will

stand as our first major axiom:

BIG AXIOM I - Side-Angle-Side (s.a.s.). If two triangles 4ABC and 4DEF have

equal corresponding sides AB = DE, included angles ∠B = ∠E, and sides BC = EF , then

(we conclude) AC = DF , ∠A = ∠D and ∠C = ∠F .

A

B
C

D

E

F

Figure 8: Quantities assumed to be equal are identically marked.

Note that we do not prove this or any other axiom, but rather accept it as a reasonable

fact in light of our geometrical experience. Many other geometrical results are logical

consequences of the s.a.s. axiom.
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When two triangles such as 4ABC and 4DEF are identical in all respects they

are called congruent (written 4ABC ≡ 4DEF ). It’s important to list the vertices in

corresponding order: A and D first, B and E second, C and F third. By comparing

corresponding parts, one correctly concludes that AB = DE, BC = EF , AC = DF ,

∠A = ∠D, ∠B = ∠E and ∠C = ∠F .
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4 Building with S.A.S.

The results in this section are proved using only (s.a.s.) and a bit of common sense (the

stuff in the Foundations).

4.1 The Bridge of Asses (Pons Asinorum)

This obscure title is the classical name for a familiar theorem concerning the isosceles

triangle (which has two equal sides).

Theorem 4.1 (P.A.) If AB = AC in 4ABC then ∠B = ∠C.

A

B C

Figure 9: An isosceles triangle.

Proof. Draw line m bisecting ∠A and crossing BC at D (see Figure 10 - equal angles

are marked by *’s). In 4BAD, 4CAD we are given BA = CA, we construct

∠BAD = ∠CAD, and obviously we have AD = AD. Hence by (s.a.s.), 4BAD ≡ 4CAD,

so ∠B = ∠C. //
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* *

(a) (b)

A

B C

m

D

Figure 10: Bilateral symmetry.

4.2 Reflections and Bilateral Symmetry

One way to rephrase P.A. is to say that an isosceles triangle has bilateral symmetry, i.e.

equal left and right sides, like most animals (Figure 10(b)).

It is also possible to consider the line m as an infinitely thin mirror, silvered on both

sides, which reflects B into C and C into B. In Theorem 4.1 we proved 4BAD ≡ 4CAD

so that BD = CD and ∠BDA = ∠CDA = 90◦. This suggests the following:

Definition 1 To reflect any point P in a line m we draw through P the line perpendicular

to m and on this line choose P ′ an equal distance from m on the side opposite P . (Thus

∠PAD = ∠P ′AD and PA = P ′A in Figure 11.)
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A

P

P
D

m

/

Figure 11: Mirror images.

We say that P ′ is the mirror image (reflected image) of P in the mirror m. Notice

that

(a) If P ′ is the mirror image of P , then P is the mirror image of P ′.

(b) Any point like D lying on m is its own mirror image, i.e. D = D′.

We now reflect a second point Q, where QQ′ meets m at D. It appears (and we shall

prove) that the segments PQ and P ′Q′ are equal in length.6

*
*

o

o

’

’

A

P

Q

D

m
P

Q

Figure 12: Reflected segments.
6Depending on context, PQ could refer to either the line through P and Q or to the length of the segment

from P to Q.
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Theorem 4.2 Reflections preserve lengths: If P and Q have mirror images P ′ and Q′ by

reflection in m, then PQ = P ′Q′.

Proof (Figure 12). By definition of reflection, PA = P ′A and ∠PAD = 90◦ = ∠P ′AD;

and of course AD = AD. Thus by (s.a.s.) 4PAD ≡ 4P ′AD, so * = * and PD = P ′D.

Since ∠QDA = 90◦ = ∠Q′DA (definition of reflection), we conclude ◦ = ◦. Thus

4PDQ ≡ 4P ′DQ′ by (s.a.s.), so PQ = P ′Q′ . //

4.3 The Triangle Inequality

The supplement of an angle in a triangle is called an exterior angle.

Theorem 4.3 (Ext. ∠) In 4ABC, the exterior angle is larger than either interior opposite

angle:

∠ACD > ∠A or ∠B.

A

B DC

Figure 13: The exterior angle theorem.

Proof . Let M be the midpoint of AC; draw BM = MP and connect PC.
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Figure 14: Proof of the exterior angle theorem.

Thus in 4AMB, 4CMP we have AM = CM , ∠AMB = ∠CMP (v.o.a.), and BM = MP .

Hence 4AMB ≡ 4CMP by (s.a.s.) and ∠A = ∠MCP , which is clearly less than ∠ACD.

The remaining inequality is left as problem 2 on page 38. //

We next prove a fundamental property of space, namely that the shortest distance

between two points is measured along the straight line joining them.

Theorem 4.4 (4 inequality) In 4ABC, AC < AB + BC.

o

o

*

*
A N

C

B

M

Figure 15: A proof of the triangle inequality.

Remark on the Proof. We shall prove this by contradiction. Either our theorem is true

or it isn’t, so we tentatively assume the theorem to be false. Next we try to logically deduce

an obviously false statement (a contradiction). If we do succeed in getting a contradiction,
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and if the universe isn’t playing tricks on us, then we are forced to deny our tentative

assumption that the theorem is false. In short, it must be true!!

Proof. Suppose on the contrary that AC ≥ AB + BC. Then we can mark off

AB = AM and NC = BC on the segment AC. Connect MB and NB. By (P.A.), * = *

and ◦ = ◦. Applying (Ext. ∠) to 4BMC and 4BNA, we find that

* > ∠MBC ≥ ◦ and ◦ > ∠NBA ≥ *.

Hence, * > *, which is impossible. Thus by contradiction, AC < AB + BC. //

4.4 A Neat Application

The geometrical consequences of (s.a.s.) seem so far to be pretty dull stuff. Here is a quite

unexpected application.

Problem: Two towns P and Q on the same side of a straight river m require a water

plant W . Where should the plant be located so that the total length of the water pipes is

as small as possible?

P Q

W

m

Figure 16: Locating the water plant.
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Solution: We must minimize PW + WQ. Reflect Q in m. By Theorem 4.2, WQ = WQ′.

The total pipe length is thus PW +WQ = PW +WQ′. However, by applying (4 inequality)

to 4PWQ′ we find that PW +WQ′ > PQ′. Hence the smallest that the pipe length could

be is PQ′, and to get this we place the water plant at the point M where PQ′ crosses m.

Done! //

*
*

o

’

P Q

W
??

m

Q

M

Figure 17: Minimizing the total path length.

The same geometrical idea can be used in a quite different application. Fermat’s

principle in optics states that a light ray will follow the path of shortest time required.

Now suppose in Figure 17 that m is a mirror which reflects a light ray from P so that it

eventually passes through Q. By Fermat’s principle the ray must strike the mirror at M .

However, we know from the proof of Theorem 4.2 that * = *, whereas * = ◦ by (v.o.a.).

Thus ◦ = * and we have proved the

Law of Reflection. When a light ray is reflected by a straight mirror m, the angle of incidence

equals the angle of reflection.
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Remark. A billiard ball with no spin will bounce in the same way off the banks of a

billiard table.

4.5 Sylvester’s Theorem

In 1893, the English mathematician J. J. Sylvester posed the following problem, which was

not solved until about 1933 by T. Gallai. In 1948, L. M. Kelly gave the elegant proof

outlined below.

Before reading further, attempt the following exercise to get a feeling for the situation:

try to draw say n = 7 points in the plane such that the line containing each pair of the n

points contains at least one other of the n points.

After a while, you may think of the following solution, which isn’t too exciting:

1 2 3 4 5 6 7

Here is another, almost correct, attempt:

��
��
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��
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1

2

3

4

5
6 7

What’s wrong?

In fact, Sylvester’s Problem asserts that we can never draw the points as required.
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Sylvester’s Problem: Given any n ≥ 3 points in the plane, not all on a single line,

show that there is at least one line containing exactly two of the points.

Proof. There are only finitely many points P1, ..., Pn and joining lines P1P2, P1P3,

..., Pn−1Pn. Thus, there must be a point, say P1 and line, say P2P3 (not containing P1) for

which the distance P1Q from point to line is the smallest such distance which occurs. We

claim that line P2P3 is the desired ‘special’ line. Indeed, suppose for the moment that line

P2P3 contains another of the given points, say P4:

P

P

PP Q

1

4 3

2

Then two of the points, say P2 and P3, must lie on the same side of Q. But clearly

the distance from P3 to line P1P2 (see the drawing) must be smaller than the distance from

Q to line P1P2, which in turn is smaller than the distance P1Q from P1 to line P2P3.7 This

contradicts our choice of the minimum such distance. Line P2P3 must indeed be a special

line. //

Recent History. The problem continues to be investigated to this day. However, we

mention only that in 1958, Kelly and Moser proved that there must be at least 3n/7

‘special’ lines.
7These rather subtle inequalities can in fact be proved as a consequence of the s.a.s axiom.
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4.6 Other Congruence Theorems

Many problems with triangles require different congruence theorems. The following stan-

dard results follow from (s.a.s.).

Theorem 4.5 (a.s.a.) If 4ABC and 4DEF have corresponding equal angles ∠A = ∠D,

sides AB = DE and angles ∠B = ∠E, then 4ABC ≡ 4DEF (note that the equal sides

connect the equal pairs of angles).

A

B C

P

D

E

F

Figure 18: Congruence with a.s.a.

Proof. On line BC draw PB = FE. (See Figure 18, in which P has been deliberately

misplaced.) Since we are given ∠B = ∠E and BA = ED we conclude by (s.a.s.) that

4PBA ≡ 4FED. Thus ∠BAP = ∠EDF = ∠BAC. Hence P = C and 4CBA ≡

4FED. //
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Theorem 4.6 (s.s.s.) If 4ABC and 4DEF have equal corresponding sides AB = DE,

AC = DF , BC = EF , then 4ABC ≡ 4DEF .

A D

EB C F

Figure 19: Congruence with s.s.s.

Proof. Draw ∠CBP = ∠FED with BP = ED = AB. By (s.a.s.), 4CBP ≡ 4FED,

so PC = DF = AC:

A

P

CB

x y

x y

Connect AP and deduce that x = x, y = y (by P.A.). Thus ∠A = x + y = ∠P = ∠D, so

4ABC ≡ 4DEF by (s.a.s.). //

Remark. Theorem 4.6 demonstrates that a triangle is rigid - for if it is made from metal

rods, then its angles cannot be distorted.
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Theorem 4.7 (R.h.s.) If right triangles 4ABC and 4DEF have equal hypotenuses AC =

DF and sides BC = EF , then 4ABC ≡ 4DEF .

A D
B

C

E

F

Figure 20: Congruence with right triangles.

Proof. Construct AX so that ∠CAX = ∠FDE and AX = DE. Thus 4CAX ≡

4FDE by (s.a.s.), so CX = FE = CB and ∠X = 90◦ = ∠B.

C

B A

Xo

o

*

*

Thus, ◦ = ◦ (by P.A.) and hence * = *. Thus BA = XA = ED. (We use the converse

to P.A., which is easily proved). Finally, 4ABC ≡ 4DEF by (s.a.s.), since we now know

AB = DE. //
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4.7 Our first look at parallel lines.

Definition 2 Two lines b and c are parallel (written b‖c) if they lie in the same plane but

do not intersect, or if they are the same line. A third line m is called a transversal if it

intersects both b and c:

b

c

m

*

o

Figure 21: Parallel lines and a transversal.

The angles marked * and ◦ are called alternate angles.

Notice that although we have defined ‘parallel lines’, we still do not know that they

actually exist ! After all, we can define anything we want, but just doing so is no guarantee

that our definition is useful or makes any sense. Let’s investigate further.
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Theorem 4.8 (equ. alt. ⇒ par.) If a transversal m makes equal alternate angles with

lines b and c, then b is parallel to c.

Proof (by contradiction). Suppose b and c intersect at A:

b
D C A

B
c

m

We are given ∠DCB = ∠CBA. However, by (Ext. ∠), ∠DCB > ∠CBA. Because of this

contradiction we conclude that lines b and c don’t intersect. //
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Corollary 4.9 If C is a point not on line c, then there exists a line b through C which is

parallel to c.

Proof.

b

cA

C

B

D

Figure 22: Parallel lines exist!

Join C to any point B on c = BA and construct ∠BCD = ∠CBA as shown. It follows

that b = DC is parallel to c. //

We have thus proved that non-intersecting, i.e. parallel, lines really do exist, in

abundance!

4.8 Absolute Geometry.

Using only the most obvious axioms, such as (s.a.s), as a starting point, we have never-

theless accomplished quite a lot. The body of geometrical theorems which depend only on

these basic axioms, and which do not involve any more specific discussion of the nature of

parallelism, is sometimes called absolute geometry.

In a sense, absolute geometry is a bit like Euclidean geometry without frills. But

even that description is a little inaccurate. In order to get Euclidean geometry, we are

33



forced to accept a totally new axiom which governs in a more precise way the behaviour of

parallel lines.

The astonishing insight of 19th–century mathematics was that we can equally well ac-

cept a very different parallelism axiom and still have a perfectly logical, but rather different,

non-Euclidean geometry. We will briefly return to this issue in section §6 below.

For now, here are a few more introductory, ‘warm-up’ exercises, followed by several

large collections of problems in absolute geometry. Try as many as you can.
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4.9 On doing problems and constructions in geometry.

Instructions.

• Most problems require some sort of proof.

1. Be brief and precise. This does not always mean that your answer must be

written in a very formal way. The main goal is to clearly express a convincing

argument.

2. Submit neat, clear diagrams.

3. For problems in absolute geometry, you must be very careful to use the results

described in the text, up to §4.8.

Otherwise, in later problem sets, feel free to use any pertinent result from class or

another source (with reference). Most exercises will require only simple results,

occurring early in your notes.

• Some special instructions for ruler and compasses (R-C) constructions.

1. You may use only compasses and a straight edge (i.e. one side of a ruler, ignoring

its cm. or inch marks). The legitimate usage of these instruments is described

in Section 24.

2. Many such problems require a proof that your construction does what is claimed.
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4.10 Some Introductory Problems

These exercises will help you absorb the geometric ideas introduced in the text to this point.

You need not be too concerned with axiomatics for the following three questions.

1. (a) In the rectangular billiard table below you must bounce the cue ball C off bank

a, then bank b so as to hit the black ball B. Copy the figure and explain how to

do this:

C B
bd

c

a

(b) Where would you aim if you had to hit bank a, bank b, bank c, then ball B?

(Explain briefly.)

(c) Where would you aim if you had to hit bank a, bank b, bank c, bank d, then

return to the original position of the cue ball C? (Explain briefly.)

2. Draw the x and y−axes as accurately as you can If you want, use lightly ruled graph

paper. Let m1 denote the x−axis and m2 the y−axis.

(a) What is the reflected image of the point [2, 3] in line m1? in line m2 ?

(b) Answer part (a) for any point [x, y].
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(c) We could reflect a point in m1, then reflect the result in m2, etc., thereby moving

a point all over the plane. Describe what happens if we reflect the point [3, 4] in

m2, then m1, then m2, then m1, then m2, etc.

(d) In part (c), what figure does the moving point trace out?

(e) Instead of starting with [3, 4], with what point or points could you start to make

each side of the resulting figure equal?

3. Two mirrors are inclined at angle θ and a light ray enters parallel to one mirror:

1

3
2

θ

in ray

(a) Determine angles 1, 2, 3, 4, etc. What is the nth such angle?

(b) Sketch the complete path of the light ray when θ = 15◦ and when θ = 36◦.
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4.11 Questions in Absolute Geometry.

In each of the following problems you may use only results covered in the Notes up to,

and including, § 4.8. (In other words, the angle sum in a triangle, similarity, trigonometry,

Pythagoras are not needed and are not allowed.)

1. (a) Given a line m and a point P , describe how to construct the mirror image P ′ of

P in m using only compasses twice.

P

 m

(b) Prove that your construction fulfills the definition of reflection, using only (s.a.s.)

and (P.A.). (In short, prove that your method actually works! If you are unsure how

compasses can be legally used, read Section 24.2.)

2. Review Theorem 4.3 (Ext. ∠) of the notes, where we proved ∠ACD > ∠A. Using

only this and previous theorems, prove also that ∠ACD > ∠B.

3. Any point on the right bisector of a straight line segment is equidistant from the ends

of the segment.

4. State and prove the converse of the proposition in the previous exercise.

5. The point of intersection of the right bisectors of two sides of a triangle is equidistant

from the three vertices.

6. The right bisectors of the three sides of a triangle pass through one point.

7. KLMN is a quadrilateral in which KL = MN and ∠L = ∠M . Prove that ∠K = ∠N .
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8. If two circles intersect, the straight line which joins their centres is the right bisector

of their common chord.

9. If M is the midpoint of a chord AB of a circle with centre O, then OM ⊥ AB .

10. Given: a circle of centre O and radius OB, draw the line t through B, perpendicular

to OB:

O

B

t

Prove that the line t intersects the circle at just one point, namely B. (Hence t is

called a tangent line.)

(Hint—prove this by contradiction; theorem 4.3 will be then be useful.)

11. If two tangents are drawn to a circle from an external point P then

(a) the tangents are equal.

(b) the line joining P to the centre bisects the angle between the tangents.

PO
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12. The diagonals of a rhombus bisect each other at right angles.

13. Suppose AB, CD, EF are three diameters of a circle. Prove that 4ACE ≡ 4BDF .

14. AB and CD are two equal straight lines. The right bisectors of AC and BD meet at

E. Prove that 4EAB ≡ 4ECD.

15. No two straight lines drawn from the vertices of a triangle and terminated in the

opposite sides can bisect each other.

16. Any point which is equidistant from the arms of an angle, lies on the bisector of that

angle.

17. The bisectors of the angles of a triangle are concurrent, i.e., they all pass through one

point.
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4.12 More Questions in Absolute Geometry.

In each of the following problems you may use only results covered in the Notes up to,

and including, § 4.8. (In other words, the angle sum in a triangle, similarity, trigonometry,

Pythagoras are not needed and are not allowed.)

You may also refer to other problems from these problem sets on absolute geometry.

1. Theorem. Suppose AB > AC in 4ABC. Then ∠C > ∠B, i.e., in a triangle, a

larger side is opposite a larger angle.

(Hint: On AB cut off AD = AC, which is possible since AB > AC.)

2. Theorem. (Converse to previous Theorem.) Suppose ∠C > ∠B in 4ABC. Then

AB > AC, i.e., the larger angle lies opposite the larger side.

(Hint: Try contradiction plus previous theorem.)

3. Theorem. Suppose AP is perpendicular to line BCP , with C between B and P .

Then AB > AC > AP (i.e. the shortest distance from a point A to line BC is along

the perpendicular, and other distances increase as expected).

4. Theorem. Suppose AB = DE and BC = EF for 4ABC and 4DEF , but ∠B >

∠E. Then AC > DF .

5. Theorem. Suppose two chords AB and CD in a circle are equidistant from the

centre O. Then AB = CD.

6. Theorem. Suppose AB = CD are chords in a circle with centre O. Then AB and

CD are equidistant from O.
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7. The sum of the diagonals of any quadrilateral is greater than the sum of either pair

of opposite sides.

8. The sum of the sides of a quadrilateral is greater than the sum of its diagonals.

9. If any point within a triangle be joined to the ends of one side, the sum of the lengths

of the joining segments is less than the sum of the other two sides of the triangle.

10. If any point within an equilateral triangle be joined to each of the vertices, the sum

of the lengths of any two of the joining segments is greater than the third.

11. The sum of any two sides of a triangle is greater than twice the median drawn to the

third side.

12. If the bisector of the vertical angle of a triangle bisects the base, prove that the triangle

is isosceles.

13. Suppose O is any point on the bisector of the angle ∠BAC; a circle with centre O

cuts each of the lines AB, AC in two points; the points on these lines nearest to A

are E and F . Prove AE = AF .

14. Say P is a point equidistant from the arms of an angle ∠AOB. Prove that PO bisects

∠AOB.

15. Suppose ABCD is a quadrilateral having AB = CD, but ∠BCD is greater than

∠ABC; prove that BD is greater than AC.

16. In 4ABC suppose that AB > AC. Equal distances BD and CE are cut off from

BA, CA respectively. Prove that BE > CD.
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17. In the triangle PQR, PQ > PR and T is the middle point of QR. If any point A on

the median PT be joined to Q and R, prove AQ > AR.

18. ABCD is a quadrilateral having AB = AD and ∠B = ∠D. Prove that AC bisects

BD at right angles.

19. If two sides AB, AC of a triangle ABC are equal and BD, CE are drawn perpen-

dicular to AC and AB, and intersect in O, prove that AO bisects the angle A.

20. A straight line is drawn to cut the outer of two concentric circles at A and B and the

inner at X, Y . Prove AX = BY .

21. AB and AC are two equal chords of a circle. Prove that the bisector of ∠BAC passes

through the centre of the circle.

22. A straight line cannot cut a circle at more than two points. (Hint: use the indirect

method, i.e. proof by contradiction.)

23. A circle is known to pass through a point P and have its centre on a given line AB.

Find another point which must be on the circumference.

24. If two chords of a circle intersect each other, and make equal angles with the diameter

drawn through their point of intersection, they are equal.

25. Tangents to a circle at the ends of a diameter are parallel.
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5 Introducing the Euclidean Axiom of Parallelism.

In order to better understand just how parallel lines work in Euclidean geometry, you should

re-read § 4.7. There we were able to prove the key Theorem 4.8:

(equ. alt. ⇒ par.) If a transversal m makes equal alternate angles with lines b and c,

then b is parallel to c.

This (absolute!) theorem is in no way based on any explicit axiom governing the behaviour

of parallel lines. We also verified the following Corollary 4.9:

If C is a point not on line c, then there exists a line b through C which is parallel to

c.

b

cA

C

B

D

Figure 23: Through any point C there does pass a line parallel to a given line c.

Considering Figure 23, we intuitively believe that DC is the only line through C parallel

to c. (See Figure 30 a few pages below for another possibility.) However, we cannot prove

that our intuition is correct using just (s.a.s.) and common sense. Instead, we are forced to

introduce a new axiom.
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BIG AXIOM II - The Parallelism Axiom (Par. Ax.). If C is any point and c any line, then

there passes through C exactly one line b parallel to c.

C b

c

Figure 24: The parallelism axiom.

Thus the axiom asserts that any other line through C will meet c in a single point,

instead of being parallel to c. We could restate the axiom using the phrase ‘at most one line

b parallel to c’ because Corollary 4.9 already gives us one such parallel line. We shall soon

find several important and well known consequences of this axiom, beginning with another

‘obvious result’ which nonetheless requires a proof:

Theorem 5.1 If b‖c and c‖a, then b‖a.

C b

c

a

Figure 25: A ‘strange’ picture used in the proof: draw the ‘normal’ version yourself.

Proof (by contradiction). If b = a there is nothing to prove. So assume b and a

intersect at one point C. But then b and a are two different lines through C, even though
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both are parallel to line c by assumption. This contradicts (Par. Ax.). Hence b and a do

not intersect and are therefore parallel. //

Next we recall that Theorem 4.8 asserts that

‘If alternate angles are equal, then lines b and c are parallel’.

or

b

c

b c

This does not necessarily imply the converse statement, in which we assume b‖c and

conclude the equality of alternate angles. Fortunately, for the sake of Euclidean geometry,

this converse statement is true, although to prove it we must use the parallelism axiom.

Theorem 5.2 (converse to Theorem 4.8). If parallel lines b and c are cut by a transversal

m, then the alternate angles are equal: ∠BCD = ∠CBA.

b

c

m

D

E

C

B

A

Figure 26: Parallel lines force equal alternate angles.
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Proof. Draw CE with ∠BCE = ∠CBA. By Theorem 4.8, CE is parallel to c. But

the (Par. Ax.) states that there is exactly one line through C parallel to c. Since b is such

a line, b = CE (and our picture is incorrect). Hence ∠BCD = ∠BCE = ∠CBA. //

Corollary 5.3 In Figure 27 below,

(a) b‖c if and only if ∠1 = ∠2

(b) b‖c if and only if ∠2 = ∠4

(c) b‖c if and only if ∠2 + ∠3 = 180◦.

Proof. Combine Theorem 4.8 and Theorem 5.2 to prove (a). Parts (b) and (c) follow

by (v.o.a.) and the definition of a 180◦ angle. //

b

c

m

2

1

4

3

Figure 27: Parallel lines and certain angles.
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Corollary 5.4 In 4ABC, ∠A + ∠B + ∠C = 180◦.

A

B C

b1
2

3

Figure 28: Angle sum in a triangle.

Proof. Let b be the line through A parallel to BC. By Theorem 5.2, ∠B = ∠1 and

∠C = ∠3, so ∠A + ∠B + ∠C = ∠1 + ∠2 + ∠3 = 180◦. //

This last result is perhaps the best known Theorem in elementary geometry. We are

able to prove this theorem, and the theorem is true, only because we have assumed (Par.

Ax.).

Corollary 5.5 (Special Ext. ∠). In 4ABC, an exterior angle equals the sum of the two

opposite interior angles: ∠ACD = ∠A + ∠B .

A

B

C

D

an
exterior angle

Figure 29: The exterior angle in the Euclidean case.
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Proof .

∠ACD + ∠ACB = 180◦ (straight angle)
∠A + ∠B + ∠ACB = 180◦ (Cor. 5.4)
Thus ∠A + ∠B = ∠ACD. //

Note on Cor. 5.5. This result depends ultimately on (s.a.s.) and (Par. Ax.). The-

orem 4.3 is a weaker version of this result, but then again Theorem 4.3 depends only on

(s.a.s.).

6 A Digression on the Parallelism Axiom.

The Parallelism Axiom rules out the sort of picture suggested in Figure 30, in which there

is more than one line parallel to c and through C. (Neither b1 nor b2 intersects c; it is an

inevitable limitation of drawing in the Euclidean plane that these lines seem to ‘curve’.)

C

c

1 2b b

Figure 30: Non-Euclidean parallels.

Though it may seem ‘obvious’ that Figure 30 cannot occur in nature, we still must

not use any fact which has not been established as an axiom or theorem. Hence, we are

forced to assume the Parallelism Axiom in our development of Euclidean geometry.

Remarkably, there is, in fact, a wonderful type of geometry called hyperbolic geometry

in which (s.a.s) is true but the usual Parallelism Axiom is false! Indeed, the situation
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depicted in Figure 30 can and does occur.

Thus in hyperbolic geometry, Theorems 3.1 to 4.8, which depend only on (s.a.s.)

among the crucial axioms, are true. But many other well known theorems from Euclidean

geometry are false in hyperbolic geometry. For example, in hyperbolic geometry the sum of

the angles of a triangle is always less than 180◦ and can even be as small as 0◦ !! In other

words, hyperbolic geometry is non-Euclidean since many common theorems which are based

on the Euclidean Parallelism axiom are no longer true.

As another example, consider the following figure, which does exist in the hyperbolic

plane:

b

c90

70o

o
These lines never

how far extended
meet, no matter

Our Euclidean intuition protests, ‘no way!’. The point is that our diagram is printed on

a Euclidean page, so that we should not expect it to accurately represent the truth in

hyperbolic geometry. There is nothing wrong with the mathematics.

So none of this strange mathematics means that hyperbolic geometry is ‘incorrect’; it

too can be built up from axioms in a logical way (but, of course, a different parallelism axiom

is required). Certainly, hyperbolic geometry does not apply to everyday measurements.

Amazingly, however, it does arise quite naturally in Einstein’s theory of special relativity

and in many other branches of mathematics. For more information consult [12, ch.6] or [3,

ch. 16].
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7 Parallelograms and The Intercepts Theorem

Definition 3 A parallelogram is a quadrilateral whose opposite sides are parallel.

Theorem 7.1 The opposite sides of a parallelogram are equal:

AB = CD and AD = CB

o

o
*

*

CD

A B

Figure 31: Opposite sides in a parallelogram are equal.

Proof. Connect BD. Since AB‖DC and AD‖BC we conclude from Theorem 5.2 that

* = * and ◦ = ◦. Hence 4ABD ≡ 4CDB (by a.s.a.), so AD = CB and AB = CD. //

Theorem 7.2 (Intercepts Theorem). If three parallel lines a, b, c make equal intercepts

with a transversal m, then the intercepts with any other transversal n are also equal.

o

o

*

*

a

b

m

R

C

B

A

Y

n

c

Q

XP
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Proof. We are given AB = BC and must prove PQ = QR. Draw line XQY parallel to

AC as shown. Since AXQB is a parallelogram we conclude by Theorem 7.1 that XQ = AB.

Similarly Y Q = BC, so XQ = AB = BC = Y Q. By (v.o.a.) * = *, and by Theorem 5.2,

◦ = ◦. Hence 4XQP ≡ 4Y QR by (a.s.a.) and PQ = RQ. //

Corollary 7.3 If any number of parallel lines make equal intercepts with a transversal m,

then they make equal intercepts with any other transversal n. (An example with seven

parallel lines is illustrated below).

nm

Proof. By Theorem 7.2, consecutive intercepts on n are equal, so they equal one

another. //
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Theorem 7.4 (The Ratio Theorem). If PQ is parallel to BC in 4ABC, with P on AB

and Q on AC, then
AP

PB
=

AQ

QC

B C

P Q

A

Figure 32: The ratio theorem.

Proof. Suppose that
AP

PB
=

p

q
, where p and q are positive integers. (Thus

p

q
is a

rational number; the case
p

q
=

3
4

is shown in Figure 33).

P Q

A

B C

q equal
units

units
p equal 

Figure 33: Proof of the ratio theorem–for a rational ratio.
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If we subdivide AB into p + q equal units, then AP will contain p of these units and

PB will contain q of them. Draw lines as shown parallel to PQ; thus (by Theorem 5.1) all

lines are parallel to the base BC (see Figure 33). By Corollary 7.3, AQ is divided into p

equal portions of a new length, and QC into q such portions. Hence,

AQ

QC
=

p

q
=

AP

PB
.//

Remark. The Ratio theorem is also true when the ratio
AP

PB
equals an irrational number,

such as
√

2 or π. Since some concepts of continuity are then required, we omit the details.

For an idea of the kind of axioms required here, see Axiom O9 in Section 10.

Corollary 7.5 In 4ABC in Figure 32, with P on AB and Q on AC, where PQ‖BC, we

have

AP

AB
=

AQ

AC

Proof (just algebra).

AB

AP
=

AP + PB

AP
= 1 +

PB

AP
= 1 +

QC

AQ
(Theorem 7.4)

=
AQ + QC

AQ
=

AC

AQ
//
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8 Similar Triangles and Pythagoras’ Theorem

We have available various congruence criteria: s.a.s., a.s.a., s.s.s. One condition that does

not imply congruence is a.a.a. For instance, 4ABC and 4DEF in Figure 34 have equal

corresponding angles but are clearly not congruent.

A

CB

D

E F

Figure 34: Similar–but not congruent–triangles.

In fact, it appears that 4DEF is a ‘scaled down’ version of 4ABC. Such triangles

are said to be similar:

Definition 4 4DEF is similar to 4ABC (written 4DEF ∼ 4ABC) if
DE

AB
=

DF

AC
=

EF

BC
.

That is, the three ratios of corresponding sides are equal.

Theorem 8.1 (a.a.a. ⇒ sim.) If 4ABC and 4DEF have equal corresponding angles,

then they are similar.

Proof. We assume ∠A = ∠D, ∠B = ∠E, ∠C = ∠F and we must prove
DE

AB
=

DF

AC
=

EF

BC
.

We shall prove only the first equality since the second follows in the same way.
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A

CB

D

E F

P Q

Figure 35:

In 4ABC in Figure 35 mark off AP = DE and AQ = DF . Thus 4APQ ≡ 4DEF

by (s.a.s.). Hence ∠APQ = ∠E. But we are given ∠E = ∠B, so that ∠APQ = ∠ABC

and PQ‖BC by Corollary 5.3. Now by Corollary 7.5,
AP

AB
=

AQ

AC
, and hence

DE

AB
=

DF

AC
.

//

Theorem 8.2 (Pythagoras) In a right triangle 4ABC, with sides a, b and hypotenuse c,

a2 + b2 = c2.

o

C B

A

D c

a

b

*

Figure 36: Pythagoras’ theorem.
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Proof. Draw CD perpendicular to AB. Then

* = 180◦ − ∠A − 90◦ (by Corollary 5.4)
= 180◦ − ∠A − ∠C
= ∠B (by Corollary 5.4).

Thus * = ∠B and similarly ◦ = ∠A. Hence, by Theorem 8.1,

4ADC ∼ 4ACB , so
AD

AC
=

AC

AB
.

That is,

AD

b
=

b

c
, so c(AD) = b2 .

Likewise,

4BDC ∼ 4BCA , so
DB

CB
=

CB

AB
,

and hence

DB

a
=

a

c
, whence c(DB) = a2 .

Finally,

a2 + b2 = c(DB + AD) = c(c) = c2 !!! //
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9 A look back at Euclidean Geometry

9.1 Where we have been and where we are going!

We have finally reached our goal. Using only the axioms (s.a.s.) and the (Par. Ax.), along

with the common sense embedded in the foundations, we have proved the basic results of

Euclidean geometry.

There are now many roads open to us. Using the theorems of sections 7 and 8 we can

set up x and y coordinates and the basic results of coordinate geometry (slopes, equations

for lines, circles and the conic sections): see Section 23 below.

Trigonometry is little more than Theorems 8.1 and 8.2, with a bag of algebraic tricks

telling us how to manipulate trigonometric functions and identities.

You are also equipped now to learn a lot of unusual and pretty mathematics. I

recommend [6]; it has lot’s of challenging and beautiful geometrical ideas.

In this course, we shall eventually encounter the ideas of isometry and group, and

their applications to patterns and designs. First, however, we digress a bit in the next

section (§ 10) to explore a bit more the rather technical axioms which underly our common

sense foundations for geometry.

But before that you should try lots of problems to exercise your geometrical muscles.

Several subsections of general Euclidean problems follow. (See § 4.9 for some basic advice.)

Here, however, you are not constrained by axioms, so you may use all standard results

of Euclidean geometry – but you should supply a reference for anything ‘obscure’.
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9.2 Some Introductory Problems

Here are a few basic problems in Euclidean geometry. You may use all standard results in

Euclidean geometry, including those covered up to § 8 in the text.

1. (a) Prove that the angles of a quadrilateral sum to 360◦.

(b) What is the sum of the interior angles in an n-gon ?

2. (a) Find BC in:

A B

C

P

Q
6 5

168

26
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(b) Arrows indicate parallel lines. Find a, b, c, d.

11

7

9

5a

6

b

d c

3. Results on Circles.

Prove the following results, which are mainly concerned with circles.

(a) Given points A, B, and P on a circle with centre O, show that no matter where

P is positioned on the upper arc from A to B, we have

∠AOB = 2∠APB .

A

B

P
P

P O

(Careful – there are two slightly different cases here.)
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(b) The angle in a semicircle is a right angle:

?
P

O

(c) In a right triangle let the altitude hc to the hypotenuse cut the hypotenuse into

two parts of length c1 and c2. Show that hc =
√

c1c2.

(d) Given a segment of length 1, provide a R-C construction for
√

6. (Hint—try to

use the previous two parts.)

(e) The opposite angles of a cyclic quadrilateral are supplementary. (Hint—look up

definitions for cyclic quadrilateral, supplementary.)

(f) For a point P external to a circle give a R-C construction for the two tangents

from P to the circle. (Hint—again part 3b will be useful.)

(g) For an external point P let the segment PT be tangent to a circle at T and let

another line PAB cut the circle at A and B. Show that

(PT )2 = (PA)(PB).

O
A

P

T
B
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(h) Let two chords AB and CD of a circle intersect at F . Show that

(AF )(FB) = (CF )(FD).

4. We’ve never used areas in proof, since we haven’t defined area ! You all ‘know’ the

area of 4ABC is

base · height
2

.

But why don’t you get a different area using another side for the base? Here’s the

answer.

In 4ABC, let ha and hb be the altitudes to sides a and b respectively. Prove that

aha = bhb.

(Hint: There are two similar right triangles sharing ∠C.)

B C

A
b

h

ha

b

a

5. Prove the Law of Sines for 4ABC:

sin A

a
=

sinB

b
=

sinC

c
.

(Hint: This follows easily from question 4 above.)

6. Facing a slightly steamed-over mirror, hold one eye shut and trace the outline of your

face in the mirror. Explain why the outline is exactly 1/2 the width and 1/2 the

height of your face (see [18, p.138]).
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9.3 Some Deeper Problems

Some of these problems explore new territory or have an extra element of trickiness.

1. Trilinear Coordinates (See [6, p.89].)

Let 4ABC be equilateral with side s and altitude h. For any point P in the plane let

x, y, z be the distances of p from sides a, b, c respectively. We take x as negative if P

lies on the other side of side a from A, and similarly for y and z. The triple (x, y, z) is

the set of trilinear coordinates for P . (They are quite different from ordinary Cartesian

coordinates).

h

s

A

C
B

b

c

a
P

z
y

x

(a) Find ∠A, ∠B,∠C. Give h in terms of s.

(b) Find a constant k such that for all points P ,

x + y + z = k .

(These coordinates are redundant. To verify this equation, compute areas of

4PBC,4PCA,4PAB .)

(c) Extend sides a, b, c infinitely far. Into how many regions is the plane decomposed?

Label each region (+ + +), (+ + −), etc. according to the signs of x, y, z.
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(d) Give coordinates for A, B, C. Give equations for lines a, b, c.

(e) Remember that the equation in part (b) always holds. What loci are described

by the equations:

(i) x + y = h
2 ?

(ii) x = y ?

(iii) x2 + y2 + z2 = h2 ? (tricky!)

(f) Suppose h = 1. Using a sketch describe all the solutions to the equation

x + y + z = 1 ,

where x, y, z are integers. (This is a Diophantine equation.)

2. (Some Problems Adapted from Geometry Revisited (reference [6])).

(a) Suppose 4ABC and 4A′B′C ′ have sides respectively parallel (AB ‖ A′B′, etc.)

Show that the lines AA′, BB′, CC ′ (extended) are either concurrent or parallel.

(b) Find the length of the internal bisector of the 90◦ angle in a triangle with sides

3, 4, 5.

(c) An isosceles 4PAB with base angles 15◦ at A, B is drawn inside square ABCD.

Prove 4PCD is equilateral.
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(d) Find ∠EDB in

30

60

o
o

o o

50

20

B

C

A

E

D

(e) Suppose PT and PU are tangents from P to two concentric circles, with T on

the smaller, and let segment PT meet the larger circle at Q.

Show PT 2 − PU2 = (QT )2.

(f) You are at the top of a road-side tower 50m. high on the prairies. Just where

the straight road vanishes in the distance you see an elevator. You drive to the

elevator finding it to be 25.2 km. away. What is the radius of the earth?
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3. If five circular arcs intersect as shown below, prove that a sixth circle can be drawn

passing through P, Q, R, S:

S
R

Q
P
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9.4 General Problems.

There is an inexhaustable supply of general problems in Euclidean geometry. Try as many

from the following collection as you can. In each problem you may use all standard results

in Euclidean geometry, including those covered up to § 8 in the text.

1. If the bisector of an exterior angle of a triangle is parallel to the opposite side, the

triangle must have two of its angles equal.

2. The bisector of the exterior angle at one vertex of a triangle cannot be parallel to the

bisector of either of the angles at the other vertices.

3. P and Q are the centres of two circles each of which lies entirely outside the other.

PM and QN are two parallel radii which are so placed that MN meets the circles

again at X and Y . Prove PX||QY .

4. The medians BD and CE of 4ABC are produced to X and Y respectively so that

BD = DX and CE = EY . Prove that X, A and Y are in a straight line.

5. The bisector of the exterior angle at the vertex of an isosceles triangle is parallel to

the base.

6. In quadrilateral ABCD, ∠A = ∠D and ∠B = ∠C. Prove AD||BC.

7. P is the midpoint of LM in 4KLM . Prove that if PL = PK = PM, ∠LKM is a

right angle.

8. The sum of the exterior angles at two opposite vertices of any quadrilateral is equal

to the sum of the interior angles at the other two vertices.
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9. PQR is a triangle in which PQ = PR. PQ is produced to S so that QS = QR. Prove

∠PRS = 3 times ∠QSR.

10. In 4ABC, A is a right angle. The bisectors of the angles at B and C meet at D.

Prove that ∠BDC contains 135◦.

11. If in 4ABC, A contains x degrees, and the bisectors of the angles at B and C meet

at D, show that ∠BDC =
(
90 +

x

2

)◦
.

12. The bisectors of the exterior angles at B and C in 4ABC meet at D. Show that if

∠A contains x degrees, ∠BCD =
(
90 − x

2

)◦
.

13. The bisector of the interior angle at A and the bisector of the exterior angle at B in

4ABC meet at P . Prove that ∠APB =
1
2
∠C.

******

14. Consider any ∠ABC. P is any point on BD, the bisector of ∠ABC. PX is drawn

parallel to BC and meets AB at X. Prove that XP = XB.

15. 4PQR is a triangle in which ∠Q = ∠R = twice ∠P . The bisector of ∠Q meets PR

at M . Prove that PM = MQ = QR.

16. Suppose DE = DF in the isosceles 4DEF .a A line drawn perpendicular to EF cuts

DE at X and FD (produced) at Y . Prove that DX = DY .

17. In 4ABC , AB > AC. D is a point on AB such that AD = AC. Prove that ∠DCB

is equal to one-half the difference between ∠ACB and ∠ABC.

18. PQRS is a parallelogram. X and Y are the midpoints of PQ and RS respectively.

Prove that PR and XY bisect each other.
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19. ABCD and ABXY are any two parallelograms having a common side AB. Prove

that CDY X is a parallelogram.

20. If in quadrilateral KLMN, KL and MN are parallel, and KN and LM are equal

but not parallel, prove that ∠K = ∠L and ∠M = ∠N .

21. In parallelogram PQRS, X and Y are the midpoints of PS and QR respectively.

Prove that PY and XR trisect QS.

22. Any straight line drawn from the vertex of a triangle to the base is bisected by the

straight line which joins the midpoints of the other two sides.

23. In any quadrilateral the midpoints of the sides are the vertices of a parallelogram.

24. In any quadrilateral the midpoints of two opposite sides and the midpoints of the

diagonals are the vertices of a parallelogram.

25. The straight lines which join the midpoints of opposite sides of any quadrilateral, and

the straight line which joins the midpoints of its diagonals, all pass through one point.

26. The internal and external bisectors of ∠BAC meet a line through C, and parallel to

AB, in the points P and Q. Prove that PC = CQ.

27. Two equal straight lines AC, BD bisect each other. Show that the quadrilateral

ABCD is a rectangle.

28. ABCD is a square and on the diagonal AC , the segment AE is cut off equal to AB;

through E , FEG is drawn perpendicular to AC, meeting BC in F and CD in G.

Show that ∠FAG is half a right angle.
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29. 4ABC is an equilateral triangle and D is any point on AB; on the side of AD remote

from C an equilateral triangle 4ADE is constructed; prove that BE = CD.

30. L, M, N are the midpoints of the sides BC, CA, AB of 4ABC. BM cuts LN in X

and CN cuts LM in Y . Prove that 4(XY ) = BC.

******

31. In a right-angled triangle the hypotenuse is double the median drawn from the vertex

of the right angle.

32. If from the vertex of a triangle two straight lines be drawn, one perpendicular to the

base, and the other bisecting the vertical angle, the angle they contain is equal to

one-half the difference between the base angles of the triangle.

33. ABC is a triangle. AK and AL are drawn perpendicular to BK, CL the bisectors of

the exterior angles at B and C respectively. Prove that KL||BC.

34. The sum of the perpendiculars drawn from any point within an equilateral triangle

to the three sides, is equal to the perpendicular drawn from the vertex to the base.

35. AB is a given straight line of unlimited length; C and D are two points on the same

side of AB. Find a point P in AB such that ∠CPA = ∠DPB.

36. ABCDE is a regular pentagon: AC, BE cut each other in F . Prove that ∠CBF =

∠CFB.

37. Show that if two parallelograms have a common diagonal, the other angular points

are at the corners of another parallelogram.
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38. Show that if one pair of opposite sides of a quadrilateral are equal, the midpoints of

the other two sides and the midpoints of the diagonals are the vertices of a rhombus.

39. Suppose ∠B = 90◦ in 4ABC. On AB, BC, respectively, points X and Y are taken.

Prove that AY 2 + CX2 = AC2 + XY 2.

40. ABCD is a rectangle and O is any point. Prove that OA2 + OC2 = OB2 + OD2.

Show that this is true even when O is not in the same plane as the rectangle.

41. In 4DEF, DX is drawn perpendicular to EF . Prove that DE2 − DF 2 = EX2 −

XF 2.

42. From a point O inside the 4ABC, perpendiculars OD, OE, OF are drawn to

BC, CA, AB respectively. Prove that BD2 + CE2 + AF 2 = BF 2 + AE2 + CD2.

43. In triangle 4ABC suppose that AN , the perpendicular from A to BC, falls within

the triangle. If BN · NC = AN2, prove that ∠BAC is a right angle.

44. 4ABC is any triangle. D is the foot of the perpendicular from A to BC. BH is

drawn perpendicular to AB and equal to CD; and CK is drawn perpendicular to AC

and equal to BD. Prove that AH = AK.
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9.5 Circles and Other General Problems.

Circles are endlessly fascinating objects, since they have so many unexpected properties.

This large collection of exercises is mainly concerned with circles.

Again you may use all standard results in Euclidean geometry, up to and including

those in § 8 of the Notes.

1. Theorem. Of two chords in a circle, the one which is nearer the centre is longer.

(Hint: Use Pythagoras twice.)

2. Two circles cut in A and B. Through A and B are drawn parallel lines XAP and

Y BQ, meeting the circles at X and P , and Y and Q respectively. Prove XAP = Y BQ.

3. Two circles with centres C and D cut in A and B. Through A is drawn a line cutting

the circles again in X and P . The lines CX and PD cut in Y . Prove ∠CAD = ∠XY P .

4. Two circles cut in A and B. C is the mid-point of the line joining their centres. The

line through A perpendicular to CA cuts the circles again in X, P . Prove AX = AP .

5. Prove that the angle in a major segment of a circle is acute, and the angle in a minor

segment is obtuse. (Be sure you understand the terminology here before proceeding!)

6. A quadrilateral is inscribed in a circle. Prove that the sum of either pair of opposite

angles equals two right angles.

7. ABCD is a quadrilateral inscribed in a circle; AB and CD are each equal to the

radius. AC and BD meet in E. Find the number of degrees in ∠AEB.

8. ABCD is a quadrilateral inscribed in a circle whose centre is O. AC and BD intersect

at E. Prove that ∠AOB + ∠COD = 2∠AEB.
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9. 4ABC is a triangle inscribed in a circle. The bisector of ∠A meets BC at D and the

circle again at E. Prove that 4ADB is equiangular to 4ACE.

10. D and E are the midpoints of the equal sides AB, AC of an isosceles 4ABC. Prove

D, B, C, E are concyclic.

11. In 4KLM, LX and MY are drawn perpendicular to KM, KL respectively. Prove

that:

(a) Y, L, M, X are concyclic.

(b) ∠LMY = ∠LXY , and ∠MLX = ∠MY X.

12. ABCD is a parallelogram. A circle with centre A and radius AD cuts DC, produced

if necessary, in E. Prove that A, B, C and E are concyclic.

13. Two circles intersect at A and B. Any straight line CD is drawn through A and

terminated by the circumferences at C and D. The bisector of ∠CBD meets CD in

P . Prove that ∠APB is constant (given that CD is variable).

14. Prove that the locus of the midpoints of a set of parallel chords of a circle is a diameter.

15. In 4ABC , BC is fixed in length and position and ∠A is constant. The bisectors of

angles B and C meet at P . What is the locus of P?

16. Chords of a given circle are drawn through a given point. Prove that the locus of

their midpoints is a circle.

17. Two circles intersect at A and B. AP and AQ are diameters. Prove PBQ is a straight

line.
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18. AB is the diameter of a circle. With centre B and radius AB, a second circle is drawn.

Prove that any chord of the second circle through A is bisected by the circumference

of the first.

19. In 4ABC, perpendiculars BD, CE are drawn to AC, AB respectively. Prove that

the midpoint of BC is equidistant from D and E.

20. P is any point on the arc of a semicircle of which AB is the diameter. PQ is drawn

perpendicular to AB. Prove that 4PQA, 4PQB and 4PAB are equiangular.

21. Show how the square corner of a sheet of paper may be used to locate a diameter of

a circle whose centre is unknown.

******

22. PQRS is a cyclic quadrilateral. PS and QR, when produced, intersect in O. Prove

4OPQ is equiangular to 4ORS.

23. If a triangle be inscribed in a circle and an angle be taken in each of the three circular

segments outside the triangle, the sum of these angles is four right angles.

24. ABCD is a quadrilateral inscribed in a circle and AD||BC. Prove ∠B = ∠C and

AC = BD.

25. Two circles intersect in A and B. PAR and QBS are straight lines terminated by

the circumferences. Prove PQ||RS.

26. Any parallelogram inscribed in a circle is a rectangle.

27. Through a point on the diagonal of a square, lines PR, QS are drawn parallel to the

sides, P, Q, R, S being on the sides. Prove that these four points are concyclic.
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28. O is the centre of a circle, CD is a diameter, and AB a chord perpendicular to CD.

If B is joined to any point E on CD and BE produced to meet the circle again in F ,

then A, O, E, F are concyclic.

29. P is on the bisector of the ∠BAC of 4ABC; circles APB and ACP cut BC in Q

and R respectively. Prove PQ = PR.

30. In 4ABC, ∠A is a right angle. AD is drawn perpendicular to BC. Prove that AC

is a tangent to the circle ABD.

31. PQ is a diameter of a circle whose centre is O; R is taken on the tangent at Q such

that QR = PQ. If PR cuts the circle at S, prove that PS = SQ = SR.

32. O is the centre of a circle: C is any point on a tangent which touches the circle at

A: CO cuts the circle at B and AD is perpendicular to OC. Prove that AB bisects

∠DAC.

33. Tangents are drawn to a given circle from an external point A and touch the circle

at B and C. On the arc BC, nearer to A, any point P is taken and a tangent is

drawn at P to meet AB, AC in X, Y respectively. Prove that the perimeter of

4AXY = AB + AC. (Thus the perimeter is constant even as P varies.)

34. A circle inscribed in 4ABC touches BC, CA, AB in X, Y, Z respectively. Prove

that AZ + BX + CY is equal to one-half the perimeter of 4ABC.

35. Two parallel tangents to a circle, meet a third tangent at P and Q. Prove that PQ

subtends a right angle at the centre.

36. ABCD is a quadrilateral circumscribed about a circle with centre O. Prove that:
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(a) AB + CD = AD + BC.

(b) ∠AOB + ∠COD = 180◦.

37. A is the centre of a circle and B is any point on the circumference: AB is produced

to P so that BP = AB: tangents PQ, PR are drawn to touch the circle at Q, R.

Prove that PQR is an equilateral triangle.

38. Two circles cut in X and Y . A line through X cuts them in A and B respectively.

AP and BQ are parallel chords, one of each circle. Prove that P, Y, Q are collinear.

39. Find the angle between the tangents to a circle from a point whose distance from the

centre is equal to the diameter.

40. From a point P , two tangents PA, PB are drawn to a circle ABD of which the centre

is O. The chord AB joins the points of contact and from A a diameter AOD is drawn.

Show that the angle ∠APB is double ∠BAD.

41. AD is perpendicular to the base BC of 4ABC; AE is a diameter of the circumscribing

circle. Prove that 4ABD is equiangular to 4AEC.

******

42. If a chord AB of a circle ABC is parallel to the tangent at C, prove that AC = BC.

43. AB, AC are chords of a circle ABC. AT is a tangent. Prove that if AB bisects

∠TAC, AB = BC.

44. Two circles intersect at A and B and through any point P on the circumference of

either one of them, straight lines PAC, PBD are drawn to cut the other circle at C

and D. Show that CD is parallel to the tangent at P .
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45. The tangent at a point P on a circle, and a chord AB are produced to meet at Q.

Prove ∠Q = ∠PBA − ∠PAB.

46. Two circles touch each other at A: through A any straight line is drawn cutting the

circumferences again at P and Q. Prove that radii through P and Q are parallel.

47. Two circles ACO, BDO touch each other and AOB, COD are straight lines. Show

that AC is parallel to BD.

48. If two parallel diameters be drawn in two circles which touch each other, the point of

contact and an extremity of each diameter are in the same straight line.

49. Two circles with centres A, B touch externally at T : a circle touching AB at T cuts

the two original circles in P and Q respectively. Prove that AP, BQ are tangents to

the new circle.

50. Two circles whose centres are A and B touch externally at C. A common tangent

touches the former circle at P and the latter at Q, and meets the tangent at C in R.

AR and PC meet in S, and BR and QC meet in T . Show that RSCT is a rectangle.

51. 4ABC is an acute-angled triangle with AB equal to AC. In AB a point D is taken

so that CD = CB. Prove that the circle circumscribing 4ADC touches BC.

52. Two circles intersect at X and Y : through X any straight line is drawn cutting the

circles at L and M . The tangents at L and M intersect at N . Prove that Y LNM is

a cyclic quadrilateral.

53. T is any point outside a circle ABC whose centre is the point O. Through T two lines

are drawn, TA touching the circle and TBC cutting it. If M is the midpoint of BC,

show that ∠AMT = ∠AOT .
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54. Two circles intersect in A and B: PQ is a common tangent. Prove that the angles

∠PAQ and ∠PBQ are supplementary.

55. Consider any 4ABC and suppose DE is parallel to BC and cuts the sides in D and

E. Prove that the circumcircles of the triangles 4ABC and 4ADE touch at A.

56. ABCD is a cyclic quadrilateral whose diagonals intersect at E. A circle is drawn

through A, B and E. Prove that the tangent to this circle at E is parallel to CD.

57. Suppose 4ABC is inscribed in a circle and that the tangents at B and C meet in T .

Prove that if through T a straight line is drawn parallel to the tangent at A, meeting

AB, AC (produced) in F and G, then T is the midpoint of FG.

58. AB is a fixed chord in a given circle. P is any point in the major arc. Find the locus

of the centre of the inscribed circle of 4PAB.

59. In 4ABC suppose D, E and F are any points on the sides BC, CA and AB respec-

tively. Prove that the circles AFE, BFD and CDE have one common point.

60. ANC, BND are chords of a circle; the tangents at A and B meet at P ; the tangents

at C and D meet at Q. Prove that the sum of the angles ∠P and ∠Q is twice ∠BNC.

61. ABCD is a cyclic quadrilateral; DE is a chord bisecting the angle between CD

produced and BD. Prove that AE (produced if necessary) bisects the angle between

BA produced and AC.

62. If two chords of a circle intersect at right angles, the sum of the squares of their lengths

is equal to the square of the diameter.

63. If the sum of one pair of opposite sides of a quadrilateral be equal to the sum of the

other pair, a circle may be inscribed in the quadrilateral.
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64. D, E, F are the points of contact of the sides BC, CA, AB of 4ABC, with its

inscribed circle; also FK is perpendicular to DE and EH is perpendicular to FD.

Prove that HK ‖ BC.

65. Parallel chords AC, BD of a circle are drawn through the ends of a diameter AB.

Prove that CD is also a diameter of the circle.

******

66. The straight line drawn from the mid-point of one side of a triangle, parallel to a

second side, bisects the third side.

67. ABCD is a trapezium in which AD ‖ BC. Prove that the straight line through E

(the midpoint of AB) and parallel to BC, bisects CD.

68. L is any point in the side DE of 4DEF . From L a line drawn parallel to EF meets

DF at M . From F a line drawn parallel to ME meets DE produced at N . Prove

that
DL

DE
=

DE

DN
.

69. On the sides BC, CA of 4ABC the points D, E are taken respectively such that

CD = 2(BD) and CE = 2(EA). The lines AD, BE intersect at O, and CO is

produced to cut AB in K. Show that AK = KB, CO = 4(OK) and 2(BO) = 3(OE).

70. D and E are points on the sides BC, CA respectively of 4ABC such that BD =
1
2

DC

and CE = EA. Show that AD bisects BE.

71. From any point O on the diagonal AC of the quadrilateral ABCD lines OX, OY are

drawn parallel to AB, AD respectively, so as to meet CB, CD respectively in X, Y .

Show that XY is parallel to BD.
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72. ABCD is any quadrilateral. From P , any point on BC, the line PR is drawn parallel

to BA to meet AC in R; and PQ is drawn parallel to BD to meet DC in Q. Prove

that RQ ‖ AD.

73. AB and CD are the parallel sides of a trapezium ABCD whose diagonals intersect

at O. Prove that 4OAB ∼ 4OCD and write down the equal ratios of corresponding

sides.

74. The medians BE, CF of 4ABC intersect at G. Prove that BG = 2(GE) and

CG = 2(GF ).

75. ABCD is a parallelogram; a straight line is drawn through A meeting BD at E, BC

at F and DC produced at G. Prove that
AE

EF
=

AG

AF
.

76. In quadrilateral ABCD, AC and BD intersect at O. Prove that if
AO

OG
=

BO

OD
, then

AB ‖ CD.

77. In 4ABC, AD is drawn perpendicular to BC, and
BD

AD
=

AD

DC
. Prove that ∠BAC

a right angle.

78. E is any point on a radius OD of a circle with centre O. F is taken in OD produced

such that
OE

OD
=

OD

OF
. P is any point on the circumference. Prove that 4OPE ∼

4OPF and that PD bisects ∠EPF .

79. ABCD is a quadrilateral. On the side of AB remote from C, ∠BAE is made equal

to ∠CAD, and ∠ABE = ∠ADC. Prove ∠ECA = ∠BDA.

80. C is any point on the diameter AB of a semicircle; the perpendicular to AB from C

cuts the semicircle at D and the chord AF in E. Prove

AE · AF = AC · AB = AD2 .
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81. AB is a diameter of a circle of radius r. A tangent at a point T on the circle cuts the

(other) tangents at A and B in C, D respectively. Prove AC · BD = r2.

82. In 4ABC, ∠B = ∠C = 2∠A and CD, the bisector of ∠C, meets AB in D. Prove

that
AB2

BC2
=

AB

BD
.

83. In 4ABC suppose AB is double BC. Also suppsoe E is a point on AB such that

EB is half BC. Prove that ∠BCE = ∠CAB.

84. S is a point in the side PQ of 4PQR: ST is drawn parallel to QR and of such

a length that ST : QR = PS : PQ. Prove that T lies in PR. (hint: first show

∠SPT = ∠QPR.)

******

85. Through any point P on the common chord MN of two intersecting circles, lines

APB, CPD are drawn, one of them meeting the circumference of one circle in A, B,

and the other meeting the circumference of the second circle in C and D. Prove that

PA · PB = PC · PD

.

86. Through points P and Q on a circle, straight lines APB, CQD are drawn meeting a

concentric circle in A, B, and C, D respectively. Prove that

AP · PB = CQ · QD .

87. Two chords AB, CD of a circle intersect at an internal point X. Prove

AB2 + XC2 + XD2 = CD2 + XA2 + XB2 .
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88. LM is a chord of a circle and it is bisected at K. DKJ is another chord. On DJ as

diameter a semicircle is drawn and KS⊥DJ meets the semicircle at S. Prove that

KS = KL.

89. If two circles intersect, the tangents drawn to them from any point on the common

chord produced, are equal.

90. If two circles intersect, their common chord bisects their common tangents.

91. Suppose 4ABC is right-angled at C. From any point D on AB, DE is drawn

perpendicular to AB, meeting AC at E. Prove

AC · AE = AB · AD .

92. From any point P outside a circle whose centre is O, any secant PAB is drawn cutting

the circle at A and B. Prove that

PA · PB = OP 2 − OA2 .

93. The common chord of two intersecting circles is produced to a point A. From A, two

lines are drawn, one to cut one of the circles at B and C and the other to cut the

second circle at D and E. Show that B, C, E and D are concyclic.

94. The bisectors of the interior and exterior angles at any vertex of a triangle, divide the

opposite side internally and externally in the same ratio.

95. If the bisectors of the angles E and F of 4DEF divide DF and DE proportionally,

then DE = DF .

96. PX is a median of 4PQR. The bisectors of angles ∠PXQ and ∠PXR meet PQ, PR

at M and N respectively. Prove that MN ‖ QR.
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97. In 4ABC, DE ‖ BC and meets AB, AC in D and E respectively. The bisector of

∠A cuts DE at F and BC at G. Prove that
BG

GC
=

BD

CE
=

DF

FE
.
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10 The Axiomatic Foundations for Geometry

10.1 Euclid’s Axioms

We shall discuss here the history and significance of Euclid’s remarkable attempt to put

geometry on solid axiomatic ground.

Modern criticisms (and repair) of Euclids attempt concern mostly very subtle, though

important, matters. To get some idea of Euclid’s approach, here is a glimpse of the first

few pages of the Elements [8][vol.1, pages 153ff]:

BOOK 1

Definitions.

1. A point is that which has no part.

2. A line is breadthless length.

3. The extremities of a line are points.

4. A straight line is a line which lies evenly with the points on itself.

• • •

8. A plane angle is the inclination to one another of two lines in a plane which meet one

another and do not lie in a straight line.

9. And when the lines containing the angle are straight, the angle is called rectilineal.

10. When a straight line set up on a straight line makes the adjacent angles equal to one

another, each of the equal angles is right, and the straight line standing on the other is

called a perpendicular to that on which it stands.
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• • •

15. A circle is a plane figure contained by one line such that all the straight lines falling

upon it from one point among those lying within the figure are equal to one another.

• • •

23. Parallel straight lines are straight lines which, being in the same plane and being

produced indefinitely in both directions, do not meet one another in either direction.

By modern standards of logic, there is much to object to here. But to be fair, Euclid’s

main goal was surely to educate his students. Perhaps the above ‘definitions’ were meant

merely to bolster ones intuition.

Besides the above primitive terms and definitions, we need axioms. These Euclid

divided into two groups (Postulates and Common Notions), presumably for rather subtle

philosophical reasons. Perhaps the Postulates were to include only those basic statements

particular to geometry, thus leaving the Common Notions for use in other sciences. Or

conceivably the distinction was interpolated into the text by one of the innumerable Greek,

Arabic and Latin scribes who later translated The Elements.
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Again Euclid’s intent was to teach the subject, so there is perhaps no point debating

the distinction. Modern mathematicians make do with one set of axioms and the basic rules

of inference. Here, in fact, is what Euclid wrote:

POSTULATES

Let the following be postulated:

1. To draw a straight line from any point to any point.

2. To produce a finite straight line continuously in a straight line.

3. To describe a circle with any centre and distance.

4. That all right angles are equal to one another.

5. That, if a straight line falling on two straight lines make the interior angles on the

same side less than two right angles, the two straight lines, if produced indefinitely,

meet on that side on which are the angles less than the two right angles.

COMMON NOTIONS.

1. Things which are equal to the same thing are also equal to one another.

2. If equals be added to equals, the wholes are equal.

3. If equals be subtracted from equals, the remainders are equal.

4. Things which coincide with one another are equal to one another.

5. The whole is greater than the part.
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Postulate 5, which ultimately deals with parallelism, is the crucial axiom. Certainly

it is aesthetically less satisfying, so much so that mathematicians through the ages have

tried to deduce Postulate 5 from the remaining four.

These efforts were doomed to failure, since Bolyai and Lobachevskii showed in the

19th century that the negation of Postulate 5 is consistent with 1 to 4. We thus are led to

the birth of non-Euclidean geometry.

87



By way of conclusion, here is how a typical proposition (s.a.s.) appears in the definitive

modern translation of The Elements [8]:

PROPOSITION 4.

If two triangles have the two sides equal to two sides respectively, and have the angles

contained by the equal straight lines equal, they will also have the base equal to the base, the

triangle will be equal to the triangle, and the remaining angles will be equal to the remaining

angles respectively, namely those which the equal sides subtend.

Let ABC, DEF be two triangles having the two sides AB, AC equal to the two sides

DE, DF respectively, namely AB to DE and AC to DF, and the angle BAC equal to the

angle EDF.

I say that the base BC is also equal to the base EF, the triangle ABC will be equal

to the triangle DEF, and the remaining angles will be equal to the remaining angles re-

spectively, namely those which the equal sides subtend, that is, the angle ABC to the angle

DEF, and the angle ACB to the angle DFE.

For, if the triangle ABC be applied to the triangle DEF, and if the point A be placed

on the point D and the straight line AB on DE, then the point B will also coincide with E,

because AB is equal to DE. etc.

A D

E FB C
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The ‘proof’, though intuitively clear, is not a proof at all, since the argument makes

hidden use of a technique which is logically equivalent to what should be proved. This is

the cardinal sin of assuming what is to be proved.

In fact, something like Proposition 4 must be taken as an axiom (such as C5 in

Veblen’s approach outlined below).

10.2 Modern Foundations for Geometry

Several mathematicians of the late 19th and early 20th centuries have provided rigorous

foundations for ordinary geometry. We mention Hilbert, Pasch, Peano and Veblen among

others. Consequently, there are many logical approaches to the same geometrical destina-

tion.

In Pasch’s development of ordered geometry, as simplified by Veblen, the only prim-

itive concepts are points A, B, ... and the relation of intermediacy [ABC], which says

that B is between A and C. If B is not between A and C, we say simply “not [ABC].” There

are altogether 15 axioms (see below: O1 - O9, C1 - C5, Par). Of course, some earlier

axioms are used to prove theorems which must be established before later axioms make

sense. Likewise, various definitions can be made only at certain points in the story.

At least once in your mathematical career you should work through the details your-

self. I recommend the beautifully written treatment in H. S. M. Coxeter’s Introduction to

Geometry [3]:

(a) §12.1, 12.2, 12.4, 12.5, 12.6

(b) §15.1, 15.2, 16.1
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At this point you will have the groundwork needed for high school geometry. Coxeter

further develops the material as follows, with many elegant mathematical excursions.

(c) For Euclidean Geometry: return to 13.1, 13.2, 13.3, 13.4, 13.6, 13.7. Or consult [21, 10]

for more detail on foundations, or [8] for Euclid in the original.

(d) For Non-Euclidean Geometry: 16.2, 16.3, 16.4, 16.5, 16.6, 16.7, 16.8 (and perhaps

20.1, 20.2, 20.3, 20.4, 20.5, 20.6).

The Axioms

Order Axioms

O1: There are at least two points.

O2: If A and B are two distinct points, there is at least one point C for which [ABC].

O3: If [ABC], then A and C are distinct : A 6= C.

O4: If [ABC], then [CBA] but not [BCA].

Definitions. If A and B are two distinct points, the segment AB is the set of points

P for which [APB]. We say that such a point P is on the segment. Later we shall apply

the same preposition to other sets, such as ‘lines.’

The interval AB is the segment AB plus its end points A and B:

AB = A + AB + B.

The ray A/B (‘ starting at A, away from B’) is the set of points P for which [PAB].

The line AB is the interval AB plus the two rays A/B and B/A:

line AB = A/B + AB + B/A.
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Note that

Interval AB = interval BA; line AB = line BA.

O5: If C and D are distinct points on the line AB, then A is on the line CD.

The next axiom puts us in two dimensions.

O6: If AB is a line, there is a point C not on this line.

Definitions. Points lying on the same line are said to be collinear. Three non-

collinear points A, B, C determine a triangle ABC which consists of these three points,

called vertices, together with the three segments BC, CA, AB, called sides.

The next axiom ensures that lines intersect in a well-behaved manner.

O7: If ABC is a triangle and if [BCD] and [CEA], then there is, on the line DE, a point

F with [AFB].

Aside: These axioms do seem very basic, and more or less state ‘obvious’ things

about space around us. However, the axioms are already sufficient to prove some non-

obvious things, e.g. Sylvester’s Conjecture - If n points are not all collinear, there is at least

one line containing exactly two of them (see 4.5).

Returning to routine things, we need more

Definitions. If A, B, C are three non-collinear points, the plane ABC is the set of all
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points collinear with pairs of points on one or two sides of the triangle ABC. A segment,

interval, ray, or line is said to be in a plane if all its points are. An angle consists of a

point O and two non-collinear rays going out from O. The point O is the vertex and the

rays are the sides of the angle. If the sides are the rays OA and OB, or a1 and b1, the

angle is denoted by ∠AOB or a1b1 (or ∠BOA, or b1a1).

The penultimate order axiom is required to prevent us from creeping into three di-

mensions. (If we want more dimensions, we need new axioms analogous to O6.)

O8: All points are in one plane.

The final order axiom is very subtle and should remind you of the Dedekind cuts that

appear in real analysis. If we chose to do so, we could use the axioms to define and describe

the real field IR.

O9: For every partition of all the points on a line into two non-empty sets, such that no

point of either lies between two points of the other, there is a point of one set which lies

between every other point of that set and every point of the other set.

For our immediate purposes, this axiom is important in that it implies the existence

of non-intersecting, and even parallel, rays.

A

B C

not intersecting ray BC

ditto -  but parallel to ray BC

ray BC

intersecting ray BC

Figure 37: Parallel rays and continuity.
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Congruence Axioms

The next set of axioms concerns a third primitive concept congruence (the others

were point and intermediacy [ABC]). Thus congruence is undefined, but when we write

AB ≡ CD, and say ‘segment AB is congruent to segment CD’, you should intuitively think

that segment AB can be moved and placed exactly on top of segment CD. It is also correct

to think of AB and CD as having the same length. But we have not and don’t yet define

‘length’.

C1: If A and B are distinct points, then on any ray going out from C there is just one

point D such that AB ≡ CD.

C2: If AB ≡ CD and CD ≡ EF , then AB ≡ EF .

C3:AB ≡ BA.

C4: If [ABC] and [A′B′C ′] and AB ≡ A′B′ and BC ≡ B′C ′, then AC ≡ A′C ′.

C5: If ABC and A′B′C ′ are two triangles with BC ≡ B′C ′, CA ≡ C ′A′, AB ≡ A′B′, while

D and D′ are two further points such that [BCD] and [B′C ′D′] and BD ≡ B′D′, then

AD ≡ A′D′.

We can now define circles, and for instance right angles (a right angle by definition is

congruent to its supplement).

Absolute Geometry concerns those theorems that follow only from the above order

and congruence axioms (O1 - O9, C1 - C5). Such theorems do not depend on an explicit

axiom concerning parallels.

Typical absolute theorems (with Euclid’s numbering in brackets) are

(a) the basic congruence theorems for triangles and angles:

93



(s.a.s.) (I-4), (a.s.a.) (I-26), (s.s.s.) (I-8), (v.o.a.) (I-15, equality of vertically opposite

angles), P.A. (I-5, I-6: two sides in a triangle are equal if-f the opposite angles are

equal)

(b) some basic constructions: angle bisectors (I-9), perpendiculars to lines (I-11, I-12)

(c) triangle inequality (I-20), exterior angle inequality (I-16)

(d) the existence of parallels because of equal alternate angles (I-27): see Theorem 4.8

These are rather dry theorems. But in fact, there are many less obvious and even

surprising absolute theorems. We refer to [17], for example.

Now there are just two types of absolute geometry - the Euclidean geometry so familiar

to us, and a very unfamilar type of non-Euclidean geometry called hyperbolic geometry (or

Lobachevskian geometry).

Just which geometry we happen to land in hinges upon whether the converse to (d)

above is true (Euclid’s theorem I-29) or false (hyperbolic geometry).
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The most efficient way to distinguish the two geometries to choose one of the following

axioms concerning parallels:

PAR:

THE EUCLIDEAN AXIOM. For some point A and some line r, not through A, there

is not more than one line through A, in the plane Ar, not meeting r.

THE HYPERBOLIC AXIOM. For some point A and some line r, not through A,

there is more than one line through A, in the plane Ar, not meeting r.

(Euclidean case)

(hyperbolic case)A

r

A

r

(The remaining axioms imply that all point-line pairs behave in the same way.)
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Let’s briefly recall from earlier sections what the Euclidean axiom does for our ge-

ometry. In Euclidean geometry (and only there), we define two lines a, b to be parallel if

a = b or a does not intersect b. Then we can prove the following converse to (d) (I-29):

If parallel lines a, b are cut by a transversal m, then the alternate angles are equal

(Theorem 5.2):

b

a

parallel
equal
alternate
angles

Only because of this can we prove most of the familiar properties of the Euclidean

plane: the angles in a triangle sum to 180◦, triangles with equal corresponding angles have

sides in proportion, all of ordinary trigonometry, Pythagoras’ theorem, the existence and

use of Cartesian coordinates.

In hyperbolic geometry, this portion of the story unfolds very differently.
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