
24 Geometrical Constructions

There are many useful instruments available for geometrical constructions, such as the ruler,
compasses, T-square, protractor, set squares, etc. However, in a tradition beginning with
the ancient Greeks and continuing into modern times, mathematicians usually allow only
the first two instruments - the ruler (or straightedge) and compasses. These rather arbitrary
restrictions are akin to the ‘arbitrary’ rules underlying any game, be it baseball or chess.

24.1 The Ruler

Our ruler is really a single straightedge, with no markings (like the smooth edge of a
hacksaw blade). Thus one is not allowed to use centimeter or inch marks, nor is one allowed
to simultaneously use both sides of an ordinary ruler.

(a) What can a ruler do? Basically all we are allowed to do with a ruler is position its edge
over two distinct points A and B, then draw a portion of the line AB. In practice, this
process is inexact; however, for the purposes of the mathematical theory describing
this and other constructions, we assume that the line drawn is ‘perfectly thin’ and is
exactly in its proper position.
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Figure 86: Constructions with the ruler.

(b) What can we then find? Having drawn lines AB and CD, we can pick out the point
X (if any) where the two lines cross (see Figure 86 above).

(c) By the way, that part of geometry which essentially concerns only those constructions
which can be performed using just a ruler i.e. straightedge, is called projective geom-
etry. Here is an unusual projective construction, which is situated in the hinterland
between Euclidean and projective geometry:



Suppose that M is the midpoint of segment AB and that P is a point not on the line
AB. Using only a ruler, give an exact contruction for the line through P which is
parallel to AB. (See Figure 87; the construction isn’t obvious, and we don’t give the
answer here.)
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Figure 87: A projective construction.

24.2 Compasses

The word ‘compasses’ really refers to a single instrument. We assume that our compasses
can be opened by an arbitrarily large or small amount. In practice, we need not push
the instrument to such extremes, so this is no real restriction. Also, we assume that the
attached pencil is capable of drawing ‘perfectly thin’ circular arcs.

(a) What can compasses do? They can be used to draw the circle µ with any centre C
and radius AB, for two known points A and B.
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(b) What can then be found? If you think about it, we can find only:

(i) the points X, Y where the circle µ crosses a line m,

µ

m
Y

X

(ii) or the points X, Y where two circles µ and λ cross.

µ
λ

X

Y

(c) Note that the opening for the compasses can be set only by using two points. Keeping
this in mind, suppose that you want to draw the circle λ with centre C, which is
tangent to the line t.

λ
C

m
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t
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Now according to the ideal rules of our construction game, one cannot simply increase
the opening of the of the compasses until the circle centred at C just touches t.16

Instead, we must first find the point D where the circle λ touches t. This is done by
constructing the line m through C and perpendicular to t; then D is the point on
lines m and t. Now we may set the radius to CD and draw the circle λ.

24.3 Basic Constructions

Review these basic constructions, or learn them if they are unfamiliar. Details can be found
in the Elements, or any basic geometry book.

(a) Given a line m and a point P construct the line through P which is perpendicular to
m when :

(i) P lies on m, or
(ii) P does not lie on m.

(b) Bisect a given angle.

(c) Duplicate a given angle. That is, given ∠ABC and segment PQ draw ∠PQR =
∠ABC.

Q

P

R

AB

C

??

(d) Given a point P not on line a draw the line b through P which is parallel to a.

(e) Use parts (a) and (b) to construct a square, then a regular octagon, then a regular
sixteen sided polygon.

16Of course, in practical work one might do just that. For the moment, however, let us rigidly follow the
rules of the construction game.
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(f) Fix a unit of measurement—that is, suppose that a chosen segment CD has length 1.
Now given two segments of lengths a and b, say

1
a

b

C D

Figure 88: Arithmetic via geometric constructions.

construct segments of length:

(i) a + b ,

(ii) a − b (if a > b) ,

(iii) ab ,

(iv) a/b ,

(v)
√

ab .

24.4 Some Basic Ruler & Compasses Constructions

. For each R-C construction below describe, and neatly perform the construction; then
prove that your construction actually works using results from the notes. (Need a hint?
-consult any standard geometry text.)

1. Find the perpendicular to line `

(a) at a point A on `;

(b) from a point A not on `.

2. Bisect a given angle ∠ABC.

3. Bisect a given segment AB.

4. Find the perpendicular bisector of segment AB.
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5. From a point A on a line ` construct a line making a given ∠PQR with `.

?

P

R

Q
A

l

6. Through a point A (not on line `), draw the line m parallel to `.

7. Give definitions for and construct the centroid, in-centre, in-circle, circum-centre and
circum-circle for 4ABC.

8. Construct the circle through three given points.

9. Divide a given segment internally AB in the ratio
x

y
, where x and y are given lengths.

That is, find P with
AP

PB
=

x

y
:

x

y

A P

B?

10. By searching a traditional geometry test, determine what it means to divide a given
segment AB externally in the ratio x

y . Describe this construction.

11. Given a segment of unit length (i.e. length l), construct a segment of length
√

m, for
any positive integer m. (Hint: see problem 3c on page 61.)

12. Construct angles of 90◦, 60◦, 45◦, 30◦.

13. Which constructions above depend on (a) (s.a.s.) only? (b) both (s.a.s.) and (par.
ax.)?

14. (Library Search: Is it possible to give an R-C construction which will trisect any given
angle? Who first answered this question? What sort of person is known as an ‘angle
trisector’ ? (There are some everywhere - New Brunswick included.)
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24.5 More Constructions.

Clearly describe how to perform each of the following ruler-compasses constructions and
prove the correctness of your procedure. Some of these construcions require only the basic
axioms (i.e. not parallelism). But despite that you may use any results in Euclidean
geometry that seem helpful.

1. Draw a right-angled isosceles triangle given one of the equal sides.

2. Construct a right-angled triangle such that one of the sides of the right angle equals
a given line segment (in length), whereas the hypotenuse equals twice the given line
segment.

3. Describe a circle to pass through three given points not in a straight line.

4. Construct a triangle being given the base, one of the base angles and the difference
between the other two sides.

5. Construct an isosceles triangle given the perimeter and the altitude.

6. Given a 4ABC and a segment XY , draw a straight parallel to BC, terminated by
AB and AC (produced if necessary), and equal in length to XY .

7. Suppose P is a point within angle ∠ABC. Draw a segment through P , terminated
by AB and BC, and bisected at P .

8. Suppose D is a point on side KL of 4KLM . Find a point E on KM produced such
that DE is bisected by LM .

9. P, Q, R are three points not in the same straight line. Construct a triangle such that
P, Q, R are the midpoints of the sides.

10. From a point P on the base of a triangle the lines perpendicular to the other two sides
are drawn. Locate P so that the difference of the lengths of these two lines equals a
given length.

11. Describe a circle to pass through two given points and to have its centre on a given
line.

12. Find a point equidistant from three given points not in the same straight line.

13. Find a point equidistant from two given points and at a given distance from a given
line.

14. An arc of a circle being given, show how to complete the circle.

15. A is a given point within a given circle. Through A draw a chord that is bisected at
A.

16. Construct a right-angled triangle having given the hypotenuse and one side.

17. Given a circle ABC, circumscribe about it an equilateral triangle.

18. Find a point P within the triangle 4ABC such that ∠APB = ∠BPC = ∠CPA.
When is the solution impossible?
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25 Regular Polygons

25.1 Polygon

(a) A polygon P is the figure formed by n points

P0 , P1 , . . . , Pn−1 (the vertices)

joined consecutively by the n segments

P0P1 , . . . , Pn−2Pn−1, Pn−1P0 (the edges).

It is convenient here to read subscripts modn.

(b) A polygon with n vertices may be called an n-gon. If all these vertices lie in one plane,
then the polygon is said to be planar. Otherwise, the polygon is skew.

(c) A convex polygon is one which encloses a plane convex region. Recall that (by defini-
tion) a convex region must contain the full line segment joining any two of its points.
(Intuitively, a convex region has no hidden corners: any two people in a convex room
can see one another.)
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Figure 89: Pentagons–convex, non-convex and with self-intersection.

25.2 Regular polygons

There are many equivalent definitions for these most symmetric of all polygons.

(a) Definition 17 We shall say that a polygon P is regular if it has

(i) all n vertices P0 , . . . , Pn−1 on some circle λ, say with centre C and radius k;
and

(ii) all edges of equal length x.
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Thus a regular polygon is necessarily planar; we shall not pursue an interesting gen-
eralization which allows skew regular polygons. By the way, the circle λ is called the
circumcircle for P, and k is the circumradius.

(b) Some examples of regular polygons are the square {4}, the equilateral triangle {3}
and the regular pentagon {5}. Note, however, that a pentagram {5/2} also satisfies
our definition: its vertices clearly lie on a circle and its edges are of one and the same
length. (Note that ‘false crossings’ such as B are not vertices of the polygon.)
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{4}
{3} {5}

{5/2}

Figure 90: Typical regular polygons.

(c) Metrical Properties of P (Refer to Figure 91.) From the centre C drop perpendiculars
to the consecutive edges Pj−1Pj and PjPj+1. (Each edge is a chord of λ, so that
midpoints Fj−1 and Fj are are the feet of these perpendiculars.) Now sinα = x/(2k),
which is the same for every edge. Thus each edge subtends the same central angle at
C; furthermore , we can calculate the vertex angle 2β since α + β = 90◦.
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Figure 91: Metrical properties of regular polygons.

Conclusions:

(i) Each central angle ∠Pj−1CPj = 2α, where sinα = x/(2k).

(ii) Each vertex angle ∠Pj−1PjPj+1 = 180◦ − 2α. (Thus, 2α is the external angle at
each vertex.)

(d) We haven’t yet related the measurements x and k to the number of vertices n in P.
Imagine that you start at P0, move along the edge to P1, then to P2, and so on until
you hit Pn−1 then finally return to P0. You have circled around the centre; but if you
try this with the pentagram above you will see that you could wind around the centre
C several times. The winding number w for P is the total number of times the centre
is circled as one traverses the consecutive edges once over.

(i) Thus the total of the n equal central angles is

n(2α) = w(360◦)

so that the central angle is

2α =
360◦

n/w
.

(ii) A regular polygon of this type is denoted {n/w}, as with the pentagram {5/2}.
The polygon is convex precisely when the winding number w = 1 (or n−1 which
you will find results in the same polygon). In this case we simply write {n}.
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(iii) Notice that 1 ≤ w < n. It is also true that we may suppose that n and w have
no common factors (other then 1, of course); we say that n and w are relatively
prime. To convince yourself of this, sketch the regular polygon {6/2}. To do this
you must draw six segments, while at the same time winding twice around the
centre; by part (a) the central angle is 120◦ = 360◦/(6/2). Does your polygon
actually have six sides? How would you describe these six sides?

(e) As a further example, let’s calculate the edge length of a dodecagram {12/5} inscribed
in the unit circle. Thus, 2(α) = 360◦/(12/5) = 150◦, so α = 75◦. Since k = 1, we
have sin(75◦) = x/2, so the edge length is x = 2 sin(75◦) =

√
2 +

√
3. Likewise, the

inradius of P (distance from C to the edge midpoints) is cos(75◦) =

√
2 −√

3
2

.

25.3 Constructions of Regular Polygons

(a) If we already have drawn a regular n−gon {n}, then by connecting every second vertex
we obtain {n/2}. Similarly, we can easily draw {n/w}, for any winding number w
(where 1 ≤ w < n). But how do we draw the original convex n−gon {n}?
For small values of n we can use a protractor to lay out the required central angle;
compasses can then be used to mark off the n equal edges. However, protractors are
considered to be mathematically crude, so we now ask which regular polygons {n} can
be constructed using only ruler and compasses. This problem fascinated the ancient
mathematicians; but it was not until 1837 that a complete answer was given.

(b) You should be familiar with elementary constructions for the square {4} and equilat-
eral triangle {3}. Now bisecting the central angles of {n} gives (on the circumcircle
λ) the n extra vertices needed to draw a {2n}. Hence, without much effort we can
construct {6}, {12}, {24}, . . . and {8}, {16}, . . . .

In fact, Euclid IV.11 and IV.16 describe constructions for {5} and {15}, respectively.
From these we can then construct {10}, {20}, . . . and {30}, {60}, . . . . This was essen-
tially the state of affairs from antiquity until 1796, when a 19-year-old German, Carl
Friedrich Gauss, stunned the mathematical world by producing totally unexpected
constructions for {17} and other regular polygons.

(c) Gauss’ discovery was particularly remarkable in that it linked the construction of {n}
to an important branch of number theory. In the seventeenth century, Fermat had
investigated prime numbers of the form

Fk = 22k
+ 1,

where k ≥ 0. Thus, for example, F0 = 3 , F1 = 5 , F2 = 17 , F3 = 257 , and
F4 = 65537 , all of which are prime numbers. However, the next Fermat number is
F5 = 4294967297, which is not prime. (It was first factored about a century ago:
notice that we didn’t actually claim above that Fk had to be prime!)

(d) Here then is Gauss’ construction:
It is possible to construct the regular polygon {n}, using just ruler and compasses,
when the only odd prime factors of n are distinct Fermat primes.
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Thus, Gauss gave (in theory) constructions for {17}, {257}, {255} (since 255 = 3·5·17),
etc. Of course, for larger values of n, an {n} of moderate circumradius is virtually
indistinguishable from a circle. Thus, the more interesting practical constructions are
for {17}, {34}, {51} and say {85}.

(e) We should carefully note that Gauss gave a sufficient condition for constructing {n};
conceivably, some totally different construction will allow us to construct {n}, when
n has nothing to do with Fermat primes. However, as Gauss likely knew and P. L.
Wantzel proved in 1837, there are no such n’s. In other words, Gauss’ condition on n
is necessary and sufficient for the construction of the regular polygon {n}.
Hence, it is impossible to construct {11}, since 11 is not a Fermat prime. It is impos-
sible to construct {9}, for in 9 = 3 · 3, the Fermat prime 3 is a repeated factor - note
the word distinct in Gauss’ condition.

Now to construct {9}, we would really only need to construct the central angle 40◦ =
360◦/9. Hence, we know it is impossible to construct with ruler and compasses a 40◦

angle.

In other words, although we can easily construct a 120◦ angle, we cannot trisect
this angle. There are still many amateur mathematicians (and perhaps even a few
misguided professionals) who vainly try to trisect general angles using only ruler and
compasses. Even though some of these attempts are clever, they inevitably involve a
misunderstanding or misuse of the rules of the construction game. 17

25.4 Symmetry Groups

The regular polygon {n} is clearly symmetric by rotation through 360◦/n about the centre
(and thus is symmetric by rotation through any multiple of this angle). Other symmetries
include reflection in any line through the centre which also passes through either a vertex or
an edge midpoint. (See Figure 90 for some typical cases.) Can you convince yourself that
these isometries are indeed symmetries for {n} and that there are no other symmetries?

How many symmetries are there? A cardboard model will help you understand the
following argument. Fix one ‘home’ vertex for reference. This vertex can be moved to any
of the n vertices (this includes staying put at home). Once there, we can either flip the
polygon over or not. Hence there are altogether 2n distinct symmetries for {n}. This group
of order 2n is called the dihedral group Dn. It therefore contains n rotations, including the
identity, and n reflections.

Note that {n} and {n/w} have the same symmetry group (so long as n and w are
relatively prime).

17There are ways to trisect angles if you change the construction rules, say by allowing a ruler with a
couple of marks on it. But already 2000 years ago, Archimedes had such a trisection procedure.
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25.5 Exercises on Regular Polygons

1. Construct an angle of 72◦. (Hint: It is known that cos 72◦ = (
√

5− 1)/4; see the next
problem.)

2. A proof that cos(72◦) = (
√

5 − 1)/4.
Here is a regular pentagon, with common edge length Pj−1Pj = 1. Notice that the
five diagonals all have the same length and form an inscribed pentagram. Let’s call
this common diagonal length

τ = P0P2 = P1P3, . . .

α

β
γ

P

P

PP

P
4

0

1

2 3

C

(a) Use a symmetry argument to show that P1P4‖P2P3, and P0P2‖P3P4. Hence show
that CP2P3P4 is a parallelogram.

(b) Prove that 4CP0P1 ∼ 4CP2P4.

(c) Calculate τ after showing that

τ − 1
1

=
1
τ

.

(d) Show that α = β = γ = 36◦.

(e) Prove that cos 36◦ = τ/2 and then calculate cos 72◦.

You may check these results on your calculator!

3. Construct regular polygons with 4, 6, 8, 12, 5 or 10 sides.

4. Using only a straightedge and compasses:

(a) Construct a regular pentagon P1P2P3P4P5.

(b) Construct in the same circle an equilateral triangle with one vertex at P1.

(c) Thus construct a {15}.
(Hint: By hand, make a rough sketch of a {15}. Observe the figure obtained by
connecting every 3rd vertex, also by connecting every fifth.)
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5. What is the order of the symmetry group for the regular dodecagon {12}? Briefly
describe all its symmetries (a diagram may help).

6. What symbol {n} should we associate with the polygon below?

7. For which n ≤ 20, can the regular polygon {n} be constructed using only compasses
and straight-edge?

8. Draw {7}, {7/2}, {7/3} in different colours and having a common vertex on the same
circum-circle.

9. (a) For a regular polygon {n} of edge length 2, compute the circumradius R for
n = 3, 4, 5, 6, 7, 8, 180.

(b) Take n = 180.

i. Find the perimeter P of this {180}.
ii. Since n is large, the polygon {180} closely approximates a circle of radius R

and circumference 2πR. Thus P ' 2πR so

π ' P

2R
.

iii. Compute π approximately by calculating
P

2R
.

(c) (Viète’s formula for π) Now and then we have casually mentioned the number
π, without saying much concerning its definition. The reason is that a tightly
rigorous description of π requires the idea of limit (from calculus) and thus a
more serious exploration of foundations than pursued in these notes. Of course
we can (and shall) define π in an elementary way using a circle. But this is a
bit of a cheat since the notions of arclength and area themselves require calculus
for a full development. Nevertheless, let us proceed in the intuitive way which is
usually adopted in elementary geometry and see what we get.
First of all, we may convince ourselves (in an elementary way), that for any two
circles the ratios of circumference to diameter are equal. This allows us to make
the following unambiguous definition:
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Definition 18 The number π is the ratio of the circumference to the diameter
in a circle.

Of course, we now have the usual formula C = 2πr , but this is little more than
a rewording of the definition. However, one can now prove the significant fact
that the area of any circle is given by A = πr2 , where π is the same constant as
defined above.
The search for the actual ‘value’ of π has a long and complicated history. (See the
chapter by D.E.Smith in reference [21].) For example, the implication of certain
verses in the Bible is that π = 3, but this is only an approximation (about 4.5%
smaller than the actual value 3.1415926 . . .). Indeed, any rational number can
be only an approximation, since it was proved in the late 18th century that π is
irrational. Thus, 22/7 is also a mere approximation, though a good one at about
0.04% too large.
In fact, we might say that π is unavoidably mysterious: since it is defined by
some sort of limiting process, we probably should not expect a simple numerical
or algebraic description. The purpose of the following exercises is to give a
‘limiting formula’ for π; the idea is due to the French mathematician François
Viète (1540-1603).
We shall look at the regular polygons {2n}, inscribed in a unit circle with centre
O, where n = 1, 2, 3, . . . . Let the edge length be xn; thus the perimeter of
{2n} is pn = 2nxn. Moreover, the central angle subtended by each edge is
ωn = 360◦/(2n).

i. Strictly speaking, the above setup makes sense only for n > 1, since a true
polygon has more than 2 = 21 sides. How should we interpret the polygon
{2}, and what are the sensible values for its perimeter p1 and edge length
x1 ?

ii. Let P and R be consecutive vertices of {2n} , so that

∠POR = ωn =
360◦

2n
.

Let OQ bisect this angle, with Q on the circumcircle:

ωn

xn
2

R

QO

P

xn+1

Why are P and Q consecutive vertices of the polygon {2n+1} ? Show that
∠QPR = (1/2)∠POQ ; hence show that

pn

pn+1
=

xn

2xn+1
= cos ωn+2 .
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iii. For n ≥ 2, show that
pn−1

pn
= 2(

pn

pn+1
)2 − 1 .

Now express pn/pn+1 in terms of pn−1/pn.
iv. Show that

p1

p2
=

√
1
2

.

Now verify Viète’s formula for π:

2
π

= lim
n→∞(

p1

p2
)(

p2

p3
) . . . (

pn−1

pn
)(

pn

pn+1
)

=

√
1
2

√
1
2

+
1
2

√
1
2

√√√√1
2

+
1
2

√
1
2

+
1
2

√
1
2

. . .
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