
Ratio, Area and Barycentric Coordinates

1. In many geometric problems, one encounters the ratio, like

AB

PQ
or [AB : PQ],

of two particular distances. When the corresponding line segments, which we also denote
by AB and PQ, lie on the same line m, it is convenient to agree that

the ratio
AB

PQ
is positive, if the two segments have the same sense

on the common line m, or negative if they have opposite sense:

A B P Q

AB

PQ
= +2,

PA

BQ
=

−3
2

.

If m is given a ‘positive sense’, or orientation, say by placing an arrow at one end, then each
segment AB on the line can be given a signed distance, according to whether the direction
from A to B follows the sense of the line or goes against it. Note as well that if we change
the unit of measurement on the line, the length of each segment is rescaled by some constant
κ. However, no matter how we change either the sense or unit of measurement, the

ratio
AB

PQ
is unchanged.

2. Suppose now that A1, A2 are any two distinct points (on a line, in the plane, in space, etc.).
Let P be any point on the line m through A1 and A2:1

A A1 2

P

m

1If context is clear, we sometimes write m = A1A2 to indicate the whole line, rather than the segment or even the
distance; this ambiguity makes for easier notation and is well worth the risk.



Notice that no matter where P is located on the line (i.e. on the segment A1A2, or on either
of the rays A1/A2 or A2/A1), we have

A1P + PA2 = A1A2

so that

A1P

A1A2
+

PA2

A1A2
= 1.

(Keep in mind our convention that oppositely directed distances have opposite sign.)

Definition We say that P has barycentric coordinates

x1 =
A1P

A1A2
, x2 =

PA2

A1A2

(with respect to the affine basis A1, A2), and we write

P = [x1, x2]

to indicate this.

Thus P , a point moving on a 1-dimensional line is described by 2 real numbers. These
coordinates are therefore redundant. Indeed, they satisfy

x1 + x2 = 1.

Here are some typical values:

2 2

1x

2x

1x

2x

A A1 2M
midpoint

[0,1] [1,0] [ 1 , 1 ]

r = 

1

0

0 1

0

8

m

2

-1

-2

1/2

1/2

1

The ratio r =
x1

x2
=

1 − x2

x2
can also be used to coordinatize points on the line, though we

must naturally use the symbol r = ∞ to locate the point A2 = [1, 0]. This sort of coordinate
is most useful when we generalize ordinary geometry to projective geometry.
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3. The above ideas generalize in a very useful way to the plane (and even to higher dimensions).

Definition If A, B, C are any three points in the plane we define the signed area (or just
area) (ABC) as follows:

(ABC) :=




area of 4ABC, if oriented anti-clockwise
− area of 4ABC, if oriented clockwise
0, otherwise (if A, B, C lie on one line).

Here is a typical example:

C

A DB
3

4

5

(ABC) = (BCA) = (CAB) = 6
(BAC) = (CBA) = (ACB) = −6
(ABD) = (ABB) = (BAD) = 0 .

4. Now fix two distinct points A1, A2 in the plane and let P be a (variable) point free to move
along any line parallel to m = A1A2:

m

(k > 0)

(k < 0)

( k=0 )

P

P

A1

A
2

q

In all cases, the signed area (PA1A2) is constant as P moves along a line parallel to A1A2,
since such triangles have a common base and constant height (as measured along a common
perpendicular q to the parallel lines). We conclude that the equation

(PA1A2) = k (1)

defines a line parallel to m = A1A2. In particular, the line A1A2 itself has equation

(PA1A2) = 0, (2)
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and splits the plane into two open half-planes, described by the inequalities (PA1A2) > 0
and (PA1A2) < 0 , respectively.

Notice that if we move P so that it approaches, then crosses, line A1A2 to the other side, the
area (PA1A2) switches sign by passing through 0.

5. Theorem 1

Let 4A1A2A3 be any triangle in the plane. Then for any point P in the plane we have

(PA2A3) + (PA3A1) + (PA1A2) = (A1A2A3).

P

P

A

A
3

A2

1

Proof. When P is inside 4A1A2A3, the three (signed) areas clearly total to the area of
4A1A2A3. Now observe that when P crosses any (extended) side, say A2A3, the area
(PA2A3) changes orientation, and hence sign, so that the area sum of the theorem remains
fixed at (A1A2A3). 2

Remark. The result is true if 4A1A2A3 has clockwise orientation, or even degenerates.
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Theorem 2

If P is any point on side A1A2 of 4A1A2A3, then

(A1PA3)
(PA2A3)

=
A1P

PA2
.

P

A

A

A

3

1

2

6. We already have enough machinery to prove a remarkably useful theorem due to the 17th
century Italian mathematician, Giovanni Ceva.

Definition. A cevian of a triangle 4ABC is a line segment joining a vertex to a point on
the opposite side (perhaps extended).

We ask when three cevians AX, BY, CZ are concurrent (i.e. pass through one point P ). Of
course, this is not usually the case.

Theorem 3

Three cevians AX, BY, CZ in 4ABC are concurrent if and only if

BX

XC
· CY

Y A
· AZ

ZB
= 1.

Remark: These are ratios of directed segments, so for example BX = −XB. Thus it is
important to write the segments exactly as indicated (at least in pairs!). To this end, note
how the six segments are encountered during a circuit of the edges of the triangle.
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Proof. Suppose AX, BY, CZ meet at P , as below:

A

B

C

P

X

Y

Z

Then by previous theorems we get

BX

XC
=

(BXA)
(XCA)

=
(BXP )
(XCP )

=
(BXA) − (BXP )
(XCA) − (XCP )

so

BX

XC
=

(BPA)
(APC)

,

and similarly

CY

Y A
=

(CPB)
(BPA)

,
AZ

ZB
=

(APC)
(CPB)

.

Multiplying these equations we get

BX

XC
· CY

Y A
· AZ

ZB
= 1.

The converse follows quite easily from the first half of the theorem. ¤
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7. Let us again fix a (proper) triangle 4A1A2A3 in the plane, so that (A1A2A3) 6= 0. For each
point P in the plane we have proved (Theorem 1) that

(PA2A3) + (PA3A1) + (PA1A2) = (A1A2A3) ,

so that

(PA2A3)
(A1A2A3)

+
(PA3A1)
(A2A3A)

+
(PA1A2)
(A3A1A2)

= 1.

Definition. The point P has barycentric coordinates

x1 =
(PA2A3)
(A1A2A3)

, x2 =
(PA3A1)
(A2A3A1)

, x3 =
(PA1A2)
(A3A1A2)

,

and we write P = [x1, x2, x3].

Again we note that such coordinates depend on the triangle of reference 4A1A2A3, and are
redundant, since

x1 + x2 + x3 = 1.

It is quite clear that the vertices of the reference triangle have coordinates

A1 = [1, 0, 0], A2 = [0, 1, 0], A3 = [0, 0, 1].

Furthermore, by observation (1) on page 3, any line parallel to side A2A3 has an equation of
the form

x1 = k

= k(x1 + x2 + x3),

or

(k − 1)x1 + kx2 + kx3 = 0,

thus, a linear homogeneous equation.
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In particular, the (extended) side A2A3, in which k = 0 (see (2) on page 3), has the equation

x1 = 0.

In brief then, the line opposite Aj has equation xj = 0. These lines split the plane into 7
non-overlapping open regions, each of which can be specified by the sign pattern

(+ + +), . . . , (−− +)

of its coordinates. Only one sign pattern is prohibited by the constraint x1 + x2 + x3 = 1.
(Which?)

1
A

2x = 0
1x = 0

x3 = 0

A2 = [0,1,0]

A3 =[0,0,1] = [1,0,0]

(+++)

(-++)

(-+-)

(++-)

(+--)
(+-+)

(--+)

Cevians for 4A1A2A3 also have rather simple equations. Consider, for example, the line
A1X, where X = [0, a, 1 − a] is some fixed point on line A2A3:

1
A

A2

A3

X

P
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Then by Theorem 2,

a

1 − a
=

(A2XA1)
(XA3A1)

=
(A2XP )
(XA3P )

=
(A2XA1) − (A2XP )
(XA3A1) − (XA3P )

=
(PA1A2)
(PA3A1)

=
x3

x2
.

Thus the cevian A1X has the homogeneous linear equation

0 = 0x1 + ax2 + (a − 1)x3.

In particular, the midpoint of A2A3 is
[
0,

1
2
,
1
2

]
, so that the median from A1 has equation

x2 = x3. Likewise, the other medians are x1 = x3 and x1 = x2; and the three medians meet
in the centroid

G =
[
1
3
,
1
3
,
1
3

]

of 4A1A2A3. We note that the three medians split the triangle into 6 smaller triangles of
equal area.

In fact, any line ` in the plane is described by a linear homogeneous equation. We have
already verified this when ` passes through a vertex or is parallel to a side of 4A1A2A3.
Thus we may assume that ` meets the (extended) sides in three distinct points, say

X = [0, a, 1 − a] on A2A3

Y = [1 − b, 0, b] on A1A3

Z = [c, 1 − c, 0] on A1A2.

(Our assumption on ` amounts to assuming that abc(1 − a)(1 − b)(1 − c) 6= 0.)

A3
1

A

A2

Y
X

Z

T
P
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Now find T on A1A2 so that A3T is parallel to `. Note that as P varies on `, both (PA3T )
and (A3A1T ) are constant, say with sum

k = (PA3A1T )

= (PA3T ) + (A3A1T )

= (PA3A1) + (A1TP )

=
(PA3A1)
(A2A3A1)

(A2A3A1) +
(A1TP )
(A1A2P )

(A1A2P )
(A1A2A3)

(A1A2A3)

= x2 · m1 + x3 · m2,

for certain constants

m1 = (A1A2A3) , m2 = (A1A2A3)
A1T

A1A2
.

Since x1 + x2 + x3 = 1 we get the equation

kx1 + (k − m1)x2 + (k − m2)x3 = 0

for `.

Collecting all these results, we obtain the following

Theorem 4

Each line in the plane is described by a linear homogeneous equation of the form

0 = k1x1 + k2x2 + k3x3 (x1 + x2 + x3 = 1)

for constants k1, k2, k3 not all 0.

8. The base triangle 4A1A2A3 is quite arbitrary. Referring again to the intercepts X, Y, Z on
the line `, we find that

A2X

XA3
· A3Y

Y A1
· A1Z

ZA2
=

1 − a

a
· 1 − b

b
· 1 − c

c
.

Now the points X, Y, Z are collinear if and only if they lie on some line k1x1 +k2x2 +k3x3 = 0
(not all kj = 0), that is to say, if and only if the matrix equation




0 a 1 − a
1 − b 0 b

c 1 − c 0







k1

k2

k3


 =




0
0
0




has a non-trivial solution in the kj ’s. But this happens precisely when
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0 =

∣∣∣∣∣∣∣
0 a (1 − a)

1 − b 0 b
c 1 − c 0

∣∣∣∣∣∣∣
= abc + (1 − a)(1 − b)(1 − c),

that is when

1 − a

a
· 1 − b

b
· 1 − c

c
= −1.

We have therefore verified

Theorem 5

(Menelaus) Points X, Y, Z on the (extended) sides

A2A3, A1A3, A1A2 of 4 A1A2A3

are collinear if and only if

A2X

XA3
· A3Y

Y A1
· A1Z

ZA2
= −1.
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