
Some Beautiful Properties of Circles

Barry Monson

(bmonson@unb.ca .... http://www.math.unb.ca/˜barry)

1 Why and how do we prove things in mathematics?

Well, that is a big question, and this sentence is the short answer. (See § 9 at the end for a more
leisurely discussion.)

1. Anyway, let’s warm up with

Exercise 1: Find the angle labelled x in

30
130o

o

x

Your solution:



2. We can speed up our calculation with a little theorem I want you to prove. (Maybe you
have seen it before.) Since this theorem concerns ‘exterior angles’, we give it the convenient
abbreviation [ ext. ∠].

Theorem. [ext. ∠] In any triangle, an exterior angle is the sum of the two opposite interior
angles:

∠ACD = ∠BAC + ∠CBA

= ∠A + ∠B ( here this is unambiguous!)

A

B D

interior angles

This exterior angle
equals the sum of these

Your proof:

My proof (may be useful to compare)

3. Exercise 2: Use [ext. ∠]to do Exercise 1 in your head.
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4. Before constructing some new geometry, we’ll dig a little into its foundations. Let’s look
critically at my proof.

(a) Why do the angles in a triangle sum to 180◦?

A B C+ + = 180
A

B
C

How could we prove this? And what is a 180◦ angle anyway? Actually, although degrees
are a convenient way to measure angles, there is nothing special about 180 – we could
have chosen 170, so getting slightly bigger units.

(b) Exercise 3: What is so good about 180 ?

(c) In fact, we can avoid this issue: by a 180◦ angle we really mean a straight angle ∠BCD

formed by three consecutive points on a line:

B D

C

(d) So our angle sum theorem really asserts something more interesting – if you cut off the
angles of a triangle, they will fit together perfectly to fill a straight line:

A

B

Cα

β
γ

α
β

γ
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(e) So how can we use this idea to prove our angle sum theorem?

Theorem [∠ sum in △]: The angles in △ABC sum to a straight angle:

A B C+ + = 180

A

B

C

My proof:

A

B

C

(parallels)
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(f) Why do parallel lines meet the line m in equal alternate angles? And what are parallel
lines anyway?

B

C

(parallels)

m

parallel lines cut the 
transverse line m in
equal alternate angles

You see that we could continue this game! But eventually we must stop our definitions
and accept certain primitive terms as being undefined (but usually we do use words like
point, line with which we are comfortable).

(g) Ultimately, we confront the Euclidean behaviour of parallel lines at the bottom of our
mathematical foundations. It is here that we can, if we wish, enforce a different kind of
behaviour and so create non-Euclidean geometry.

Instead, let’s move forward into the Euclidean world of circles!
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2 Angles inscribed in circles.

1. Now, with your help, let’s prove:

Theorem [∠ at arc] Suppose A,B are two points on a circle ω with centre O, and let P be
any point on the arc (not subtended by ∠AOB). Then

∠APB =
1

2
∠AOB.

A
B

P

O
ω

Our proof: Where to start? What do we have? Where must we go?

A
B

P

O
ω

(See § 7 below for abbreviations of commonly used results.)
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2. Actually, our proof above is valid only when P lies between AO (extended) and BO (ex-
tended). So there is a second case, which can and must be proved.

A
B

O
ω

P

Your task: prove in this second case that ∠APB = 1

2
∠AOB .
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3. Complete the statements of these ‘mini-theorems’, or corollaries, and supply brief proofs.

(a) Corollary 1 [∠ in semi © ]: The angle in a semicircle is ◦; i.e., if AOB

is a diameter, then ∠APB = ◦.

O
ω

A

B

P

(b) Corollary 2. Suppose A,B are two fixed points on a circle ω. Then as P varies on
either of the arcs determined by A,B

∠APB is .

A

Bω

P
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A cyclic quadrilateral is a 4-sided polygon which can be inscribed in a circle. Not
every quadrilateral is cyclic.

A

B
C

D

P

Q

S

R

ABCD 
is cyclic is non-cyclic

PQRS

(c) Corollary 3 [∠’s in cyc. quad ]: The opposite angles of a cyclic quadrilateral are
supplementary (i.e., add to 180◦): ∠A + ∠C = 180◦ = ∠B + ∠D.

A

B
C

D

+ = 180A +B=C D

(d) Corollary 4. Any angle external to a cyclic quadrilateral equals the opposite internal
angle.

A

B

D

C
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(e) Corollary 5. Suppose △ABP and △CDQ are inscribed in a circle ω, and AB = CD.

Then either

(i) ∠APB = ∠CQD (when?); or

(ii) ∠APB = 180◦ − ∠CQD (when?).

A

B
C

D
P

Q

4. Problems 4: Try any of exercises 1–12 in § 8 below.
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3 Product of segments on chords.

1. Theorem [ chords through int. pt.]: Suppose AXB and CXD are two chords of a circle
ω, which intersect at an interior point X. Then XA · XB = XC · XD.

A

ω

BC

D

X

Proof:

2. ** Some Important Jargon ** If X is interior to ω, the product XA ·XB is independent
of the chord AXB you choose to compute with. That is, with respect to the circle ω

XA · XB is an invariant of the point X.

11



3. Let’s move outside.

Theorem [sec. and tang. from ext. pt.]: Suppose X is external to circle ω and XT is
one of the two tangents to ω from point X:

ω

XA

B
T

Suppose XAB meets ω at A,B. Then

XA · XB = (XT )2.

Proof:

ω

XA

B
T

4. Corollary. Suppose X is external to circle ω and XAB,XCD are any two secants meeting
ω at A,B and CD respectively. Then

XA · XB = XC · XD.

(Thus this product is an invariant for the external point X.)
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4 Pencils of Circles.

Although the ideas coming up are Euclidean in nature, they also are related, on a deeper level, to
certain motions and families of curves in

non-Euclidean geometry.

(The families of circles shown below are useful in describing a Euclidean road-map, or model, of a
non-Euclidean world.)

1. Look at the collection I of all circles through two fixed (and distinct) points A,B:

A B

The collection I is called an intersecting pencil of circles.

2. Problems 5:

(a) Characterize the centres of the circles in I.
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(b) A Coordinate Description. Suppose

A = (−1, 0), B = (1, 0).

(i) What are the centre and radius of a typical circle ω in the pencil I?

Centre =

Radius =

(A general answer has to involve a parameter k, which is fixed for each circle, but
which varies somehow for different circles.)

(ii) What is the equation of a typical circle?

(c) Since k is free to vary, we may say that I is a one-parameter family of circles. As
k becomes vary large, indicated by writing

k → ∞

what happens to the circle ω?
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k 8

A B

k = 8.4

k = 1.4
k = 1.2

k = 2.8

m

3. Thinking about this, we agree that it is very natural to include the (infinite) line m through
A,B in the pencil I. Some observations:

• The straight line m fills a gap: with it, we see that with two exceptions, every point in
the plane lies on exactly one member of the family I.

What are the two exceptional points?

• The line m (or any line, by the same reasoning) is a circle of infinite radius, and whose
centre is some point at infinity.

• From the point of view of inversive geometry, every line is a ‘circle of infinite radius,
whose centre is the point ∞ (at infinity).

4. Now fix any point X on m, but outside segment AB. Draw the line XT tangent to some
circle ω of the pencil.

mA B

T

X

ω

Thus
XT =

√
XA · XB

which is independent of the circle ω ∈ I (since all circles ω ∈ I do pass through A,B).

So as ω varies in the pencil I, XT is nevertheless constant, hence T will trace out a circle µ,
centred at X, a circle which is perpendicular to every circle ω of I (why?!):
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mA B

T

X

ω

µ

To recap, for every point X as centre, we get a very special circle µ. These new circles µ

taken together form

‘the non-intersecting pencil N ’.

Again we include in N , as one limiting case, the line n which is the perpendicular bisector of
segment AB. At the other end of the scale, one can think of the limit points A,B as circles
of radius 0 in N :

A B

n

m
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5. Exercise 6. Explain why no two circles of N intersect.

6. Here is a picture of both pencils:

A

n

m

B

Again observe that each circle ω of I meets each circle µ of N and does so in a perpendicular,
or orthogonal, manner. That is, the tangents at any intersection point Q are perpendicular
lines. By the way, this is how we measure angles between curves, like these circles, which
intersect.

We may say finally that I and N are orthogonal pencils of circles.

7. Exercise 7. What happens when we let A,B approach one another? If A = B, then we get
two mutually orthogonal tangent pencils:
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5 The Power of a Point.

Suppose ω is a fixed circle of radius R and centre O. If X is any point distant d from the centre,
we call

d2 − R2

the power of X (with respect to the circle ω).

1. Exercise 8. When is the power of X positive? negative? zero?

2. Exercise 9. What is the smallest value that the power of X can have with respect to a fixed
circle whose radius is R? Which point has this extreme power?
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3. Before continuing with this, we need a useful idea.

The length of a segment AB is normally taken to be a positive number (or 0 if the end points
coincide).

However for points A and B on a directed line m, it is very useful to agree that

• AB is positive, if A, then B, occur in the chosen direction along m,

• AB is negative, if A then B occur against the chosen direction,

• AB is zero, if A = B.

A

C

B
D

m

Thus AB,CD,CB are all ⊕
BC,DA are all ⊖
AB · BC is ⊖
AC · BD is ⊕.

Notice that we could have originally directed m in the opposite sense (i.e., left). Then every
individual length is reversed. For example, AB would be ⊖, BC ⊕, but still

AB · BC would be ⊖ .

(Recall (−1)(−1) = +1.)

Conclusion: The products of two directed lengths on a directed lines m is unchanged if we
reverse the direction of m.

This is useful, since we need not worry how we choose this direction.
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4. Now we are ready for a result which ties all this together.

Theorem. Fix a circle ω. For any point X in the plane suppose that a directed line m

through X meets the circle in points A,B. (We may take A = B if m is tangent to ω.) Then
the power of X with respect to ω is

XA · XB.

ωωω

m

m A

A

BB

X X = 

A

B

X

m

Proof: The upshot of our big theorems in § 4 is that XA · XB is independent of our choice
for line m. Note that when X is interior to ω, the product XA ·XB is now considered to be
negative.

Anyway we can choose m to be the line through X directed toward the centre O of ω. The
case that X is interior is typical enough:

ω

A

B

XO AB m
R d

Thus m meets ω at A′, B′, and if R is the radius,

XB′ = (XO + OB′) = (+d + R)

XA′ = (XO + OA′) = (+d − R).

Hence

XA · XB = XA′ · XB′ (theorem 1 [ chords through int. pt.] in § 3)

= (d + R) · (d − R)

= d2 − R2, (the power of X).
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5. Exercise 10. Verify the other two cases, when X is on ω, or outside ω.

6. Exercise 11. Suppose k > −R2 is a constant. What is the locus of points with power k?

7. Exercise 12. Suppose PT and PU are tangents from P to two concentric circles, with T on
the smaller; and suppose segment PT meets the larger circle at Q. Prove that

PT 2 − PU2 = QT 2.
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6 Coordinates for the power, the radical axis, etc.

1. More Problems 13: Suppose a circle ω has

centre = O = (a, b)

radius = R.

(a) What is the distance d from any point X = (x, y) to O?

d = .

(b) When exactly is X on the circle ω?

(c) What is the equation for ω?

(d) What is the power of any point X with respect to ω? Is this consistent with part (c)?
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2. Notice that the circle ω with centre (a, b) and radius R has equation

(x − a)2 + (y − b)2 = R2

or

x2 − 2xa + a2 + y2 − 2yb + b2 = R2

or

x2 + y2 − 2xa − 2yb + c = 0,

where the constant

c = a2 + b2 − R2.

We might represent another circle ω′ by

x2 + y2 − 2xa′ − 2yb′ + c′ = 0,

for constants a′, b′, c′.

Note, as well, that ω, ω′ are concentric precisely when both a = a′, b = b′.

3. Exercise 14. Compute the length of the tangent from X = (−3, 5) to the circle with equation
x2 + y2 = y − x.
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4. Theorem. The locus of all points whose powers with respect to two non-concentric circles
are equal is a line perpendicular to the line of centres of the two axes.

Proof. By part (2), we may take the two circles to be

x2 + y2 − 2xa − 2yb + c = 0
x2 + y2 − 2xa′ − 2yb′ + c′ = 0

for certain constants a, b, c, a′, b′, c′, with either a 6= a′ or b 6= b′ (or both). In fact, we could
just as well choose our x, y axes so that the two centres lie on the x−axis, meaning b = b′ = 0.

So how do we describe the desired locus? (A locus is a curve defined by some algebraic
condition on (x, y).)

Thus our locus is indeed the line

x =
c′ − c

2(a′ − a)
,

which is a (vertical) line perpendicular to the (horizontal) line of centres.

5. Definition. The above line associated to the two non-concentric circles ω, ω′ is called their
radical axis.
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6. Exercise 15.

(a) What is the radical axis when our two circles intersect?

(b) What happens when the two circles are tangent?

(c) Where does the radical axis fit into our discussion fo the intersecting pencil I and non-
intersecting pencil N in §?

(d) What happens when we attempt to describe the radical axis for concentric circles?

7. Exercise 16. When the distance between the centres of two circles exceeds the sum of their
radii, the two circles have four common tangents. Prove that the midpoints of thee four
segments are collinear (i.e., lie on one line).

8. Exercise 17. Given two non-collinear circles ω, ω′, describe a ruler and compasses construc-
tion for their radical axis. (Hint: draw any third circle which meets ω in two points, say A

and B, and ω′ in two further points A′ and B′. Suppose lines AB, A′B′ meet at X. What
can you say about the power of X with respect to each of the three circles?)

9. Exercise 18. Suppose ω, ω′ are two non-intersecting circles. Describe a ruler and compasses
construction for the limit points of the non-intersecting pencil which contains ω, ω′.
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7 Some Common Theorems in Euclidean Geometry

Since mathematics, in particular geometry, grows step-by-step from simpler to more and more
complicated things, it must be that1

‘what you can assume in your proof depends on where you are! ’

Generally, in problems on contests or from magazines, you are allowed to assume and use any of
the geometrical results typically covered in high school courses of the past. Here is a list of such
theorems which come to mind. The list isn’t complete, and some of the abbreviations are my
inventions; but you will get a sense of what is available.

1. Basic Congruence. When two triangles such as △ABC and △DEF are identical in all
respects they are called congruent, written △ABC ≡ △DEF . It’s important to list the vertices
in corresponding order: A and D first, B and E second, C and F third. By comparing corresponding
parts, one correctly concludes that AB = DE, BC = EF , AC = DF , ∠A = ∠D, ∠B = ∠E and
∠C = ∠F .

We must assume as an axiom something like

[s.a.s]: If two triangles △ABC and △DEF have equal corresponding sides AB = DE, included

angles ∠B = ∠E, and sides BC = EF , then (we conclude)

△ABC ≡ △DEF ,

i.e. AC = DF , ∠A = ∠D and ∠C = ∠F .

From this we can prove

[a.s.a.]: involving two angles and included side

[s.s.s]: involving three sides (triangles ‘rigid’)

[r.h.s]: involving the hypotenuse and one other side for each of two right triangles

However, congruence is not implied by the ambiguous criterion [s.s.a.].

[= ∠’s in isosc. △]

[△ inequ.]: each side of a triangle is less than the sum of the other two.

2. Angles and Parallels

[= alt. angles]: lines are parallel if and only if they meet any transversal in equal alternate
angles.

[∠ sum in △]

[ext. ∠]

1Regrettably, these days the high school curriculum has mostly abandoned geometry as a story built on the the

telling of proofs. Instead, you often get a mishmash of things, typically returning to the same topic over and over.

This is very boring for students who like math!
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3. Similarity and Related Results

[= intercepts] If any number of parallel lines make equal intercepts with a transversal m,
then they make equal intercepts with any other transversal n.

[ratio thm] If PQ is parallel to BC in △ABC, with P on AB and Q on AC, then

AP

PB
=

AQ

QC

Recall △DEF is similar to △ABC, written △DEF ∼ △ABC, if

DE

AB
=

DF

AC
=

EF

BC
.

That is, the three ratios of corresponding sides are equal.

[a.a.a]: triangles with equal corresponding angles are similar (but usually not congruent)

[pythag]: In a right triangle △ABC, with sides a, b and hypotenuse c, we have a2 + b2 = c2.

(The converse to Pythagoras is also true and is often used.)

[law of sines]

[law of cosines]

4. Circles

[∠ at arc]

[∠ in semi © ]

[∠’s in cyc. quad ]

[ chords through int. pt.]

[sec. and tang. from ext. pt.]
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8 Extra Problems.

1. ABCD is a quadrilateral inscribed in a circle; AB and CD are each equal to the radius. AC

and BD meet in E. Find the number of degrees in ∠AEB.

2. ABCD is a quadrilateral inscribed in a circle and AB = CD. Prove that AC = BD.

3. ABC is an equilateral triangle inscribed in a circle; P is any point on the minor (i.e. smaller)
arc AC; BD is cut off on BP equal to CP . Prove:

(a) △ABD ≡ △ACP ,

(b) △ADP is equilateral,

(c) BP = AP + PC.

In classical constructions, you are allowed to use only compasses and a straight edge, i.e., one
side of a ruler whose markings you must ignore.

Typically you are given certain data to work with. For example, lengths are normally given
by a line segment (which you can copy using the compasses).

4. Show how to construct a right triangle given just the hypotenuse and one side.

5. Two circles intersect at A and B. AP and AQ are diameters. Prove PBQ is a straight line.

6. AB is the diameter of a circle. With centre B and radius AB, a second circle is drawn. Prove
that any chord of the second circle through A is bisected by the circumference of the first.

7. Show how the square corner of a sheet of paper may be used to locate a diameter of a circle
whose centre is unknown.

8. A,B,C are three points on a circle such that ABC is an acute-angled triangle. BQ and CR

are diameters of the circle and AQ and AR are joined. Prove that ∠BAR = ∠CAQ.

9. If a triangle be inscribed in a circle and an angle be taken in each of the arcsb outside the
triangle, the sum of these angles is four rt. angles.

10. ABCD is a quadrilateral inscribed in a circle and AD||BC (parallel). Prove ∠B = ∠C and
AC = BD.

11. A quadrilateral is inscribed in a circle. Find the sum of the angles subtended in the four arcs
outside the quadrilateral.

12. KLMN is a parallelogram (= quadrilateral, with pairs of opposite sides parallel). A circle
through K and L meets KN and LM , produced if necessary, in P and Q respectively. Prove
P,Q,M,N concyclic.

13. The point P is external to the circle ω with centre O.

(a) Show how to construct (with ruler and compasses) the circle whose diameter is OP .

(b) Now show how to construct the tangent lines from P to ω.

(c) Prove that these two tangents are equal in length, and make equal angles with the line
OP .

14. A circle inscribed in △ABC, touches (i.e., is tangent to) BC, CA, AB in X, Y, Z respec-
tively. Prove that AZ + BX + CY is equal to one-half the perimeter of △ABC.
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15. Two parallel tangents to a circle, meet a third tangent at P and Q. Prove that PQ subtends
a right angle at the centre.

16. The sides of a quadrilateral ABCD touch a circle. AD and BC are produced to meet in X,
and BA and CD are produced to meet in Y . Prove that the difference between AX and CX

is equal to the difference between AY and CY .

17. The sides BC, CA, AB of △ABC touch a circle at D, E, F respectively. If ∠A = 50◦, ∠B =
78◦, calculate each angle of △DEF .

18. Two concentric circles are drawn with radii 13 cm. and 5 cm. Calculate the length of a chord
of the larger circle which touches the smaller.

19. If a chord AB of a circle ABC is parallel to the tangent at C, prove that AC = BC.

20. AB is a chord of a circle and AC is a diameter. AD is drawn perpendicular to the tangent
at B. Show that AB bisects ∠DAC.

21. Two circles intersect at A and B and one of them passes through O, the centre of the other.
Prove that OA bisects the angle between the commond chord AB and the tangent to the first
circle at A.

22. A chord CD in a circle, perpendicular to a diameter AB, meets AB in E. Prove that
AE · EB = CE2.

23. Through any point P on the commond chord MN of two intersecting circles, lines APB, CPD

are drawn, one of them meeting the circumference of one circle in A, B, and the other meeting
the circumference of the second circle in C and D. Prove that PA · PB = PC · PD.

24. PQ is the common chord of two intersecting circles. AB and CD are chords in the circles
which both pass through O, any point in PQ. Prove that A, B, C, D lie on a circle.

25. Through points P and Q on a circle, straight lines APB, CQD are drawn meeting a concentric
circle in A, B, and C, D respectively. Prove that AP · PB = CQ · QD.

26. Two chords AB, CD of a circle intersect at an internal point X. Prove

AB2 + XC2 + XD2 = CD2 + XA2 + XB2

.

27. If two circles intersect, the tangents drawn to them from any point on the common chord
produced, are equal.

28. If two circles intersect, their common chord (suitably extended) bisects their common tan-
gents.

29. A triangle ABC is inscribed in a circle. A straight line drawn parallel to the tangent at A

meets AB, AC at D, E respectively. Prove that AB · AD = AC · AE.

30. The common chord of two intersecting circles is produced to a point A. From A, two lines
are drawn, one to cut one of the circles at B and C and the other to cut the second circle at
D and E. Show that B, C, E and D are concyclic.
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9 Axioms and Proofs

Often when students and other users are doing mathematics, they actually have some application
in mind and are really engaged in calculations of one sort or another. From basic arithmetic to
advanced calculus, users of mathematics are frequently engaged in doing computations, generally
following some explicit procedure (called an algorithm).

We have done a fair number of calculations during the Math Camp. There is, however, much more

to mathematics than this.

In fact, a mathematician may be far more concerned with understanding why things work, typically
by thinking about the patterns that underlie our geometric and arithmetic calculations. This
thinking generally culminates in a proof.

Why proof? – because in mathematics we want to work with powerful and wide-ranging statements
and methods, and we want to be 100% certain that these statements are true.

We should realize that the word ‘true’ has a very strong meaning. For example, in our Theorem 2

that the sum of the angles in a triangle is 180◦, we are in fact asserting that the sum of the angles
is exactly this (not 179.000000003◦ ); and furthermore this is so for all triangles, from microscopic
to astronomical size.

Now, in order to prove such statements, we necessarily work with simpler statements and ideas.
We have a problem! This process will never end, unless at some convenient point we begin with
an unquestioned set of axioms (taken to be true, but unproved) and some set of terms (taken to
meaningful, yet undefined). To see this process in action, let’s recall what happened in our proof
that the angles of a triangle add to 180◦.

First of all, we should begin with a clean mental state. Thus, for the moment, we suppose that
we don’t know one way or the other if ∠A + ∠B + ∠C = 180◦. Of course, our mind isn’t (or
shouldn’t) be completely empty.We do know some geometrical facts, perhaps having nothing to do
with triangles. So we try to use these facts to explain our theorem. For example, we ‘already knew’
that

• there is ‘a line m through vertex C which is parallel to the opposite side AB ’.

• ‘alternate angles are equal’.

• ‘any straight angle at C has 180◦.

Hold on! How did we know these other assertions to be true? Well, they must themselves have
been proved or somehow accepted earlier on. And in the course of these earlier proofs, we used
facts encountered or proved earlier still, and so forth. Where does this all end?

There is also the issue of mathematical language. While we are pursuing all these proofs, we are
using various mathematical words, as well as exploiting the connections between these words. For
example, even to discuss the theorem, we must already know what a ‘triangle’ is, what a ‘180◦

angle’ is, what ‘parallel lines’ are, etc.

Consider the word ‘triangle’. Sometime early on in your mathematical experience, you were told
what a triangle is, perhaps using pictures, or straws on a table. A more sophisticated description

2Theorems go by other names, like ‘proposition’, ‘corollory’, ‘claim’ or ‘lemma’, more or less depending on the

stature of the result in mathematical society.
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might go like this: ‘a triangle is a closed plane figure bounded by three straight line segments’. But
how do we define the words ‘figure’, ‘straight line segment’, etc. These too require explanation.
Where does this all end?

The answer can only be that we must accept certain primitive words, e.g. point or line, as being
undefined. There simply is no alternative to starting somewhere like this. Likewise, we must accept
certain facts, called axioms, concerning our mathematical objects, as being true but unproved.
This process of mathematical proof has been summarized very nicely by H. S. M. Coxeter in his
beautiful book Introduction to Geometry (Wiley, 1969):

In the logical development of geometry (or calculus or other branches of mathematics),
each definition of a concept involves other concepts or relations. Thus, the only way to
avoid a vicious circle is to accept certain primitive concepts and relations as undefined.
Likewise, the proof of each proposition (or theorem) uses other propositions; and hence
to again avoid a vicious circle, we must accept certain primitive propositions – called
axioms or postulates – as true but unproved.

In a nutshell, we take certain primitive ideas, which everyone will be willing to believe and use
them in a logical way as building blocks for more and more complicated results. This is the essence
of the deductive method in mathematics. The force of the method is that if you believe the axioms,
which are usually ‘obviously true’, then you must believe the theorems which follow, no matter how
outlandish.

It is a wonderful fact indeed that many surprising, even bizarre, theorems can be proved on the
basis of a certain number of obvious assumptions. It is perhaps even stranger that all this proves
to be so often useful in ‘real world’ applications.

Of course, our axioms must not contradict one another. Otherwise we should be able to prove
nothing useful at all. And if there are fewer axioms than very many, we shall be better able to
understand what makes our mathematics work.

Beyond this, however, just what we choose to be an axiom, and what we reject, is a matter of taste
and judgement: What does common sense suggest? What does our intuition suggest? What is the
most elegant way to begin our mathematical journey?
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