
Sets and Groups
Barry Monson, UNB

1 Sets

In the logical development of any branch of mathematics, each definition of a concept involves
other concepts or relations. Thus, the only way to avoid a vicious circle is to accept certain
primitive concepts or relations as undefined. Likewise, the proof of each proposition (or
theorem) uses other propositions. Hence, to again avoid a vicious circle we must accept
certain fundamental propositions – called axioms or postulates – as true but unproved. (Here
I have paraphrased a particularly nice description due to H. S. M. Coxeter.)

Although the starting point for this process is somewhat arbitrary, most modern mathemati-
cians begin with set theory and build up from there1. Keeping in mind the vicious circle,
we realize that there is no point giving a formal definition of set. Instead, at the beginning,
we can only discuss informal but sensible ways of thinking about sets2. Thus a set A is any
collection of objects x, called elements of the set3. We write

x ∈ A

(and say ‘x belongs to A’ or ‘x is an element of the set A) if indeed x is one of the objects
in A. If the object y is not in A we write

y 6∈ A.

Intuitively, if x ∈ A, then x and A have ‘different levels of organization’.

Example.

A = one of your classes last term

x = you (or one of your classmates)

y = George W. Bush

so x ∈ A, y 6∈ A. Again intuitively, the class A has a ‘higher level of organization’. Now
imagine that students drop the class one by one. The class A changes to B, then C, etc. as
enrolment drops. We say B is a subset of A, C is a subset of B, indeed C is a subset of A:

1In practice, we aren’t deterred by 20th century discoveries, due to Gödel and other logicians, that the
axiomatic method has inevitable and surprising limitations. For example, any mathematics which accepts
the legitimacy of the natural numbers 1, 2, 3, . . . must contain theorems (i.e., true statements) which cannot
be proved!

2The American mathematician Paul Halmos has written an excellent book ‘Naive Set Theory’, as an
introduction to the foundations of mathematics for working mathematicians.

3To repeat: this is a way of thinking, not a precise definition.



C ⊆ B ⊆ A.

The sets A, B, C, . . . are different but still have the ‘same level of organization’. We can
image that everyone drops the class, so it makes sense to allow an empty class E, still
satisfying

E ⊆ A.

If we try to make a census of all elements x of A, we might ask ‘Which of you were born in
Fredericton?’ or ‘Which of you are Math. majors?’ or ‘Which of you have blond hair?’, etc.
We wouldn’t count twice a person who answered yes to two or more questions. Thus, as is
reasonable, we shall agree that:

‘order and repetition are irrelevant when
assessing elements in a set’.

(If order and repetition are important, we instead employ a list, which is really a function,
which is really a very special kind of set! See below.)

Definitions. Suppose A, B, etc. are sets.

1. A is a subset of B, written A ⊆ B, if every element of A is an element of B:

x ∈ A ⇒ x ∈ B.

2. A equals B, written A = B, if A ⊆ B and B ⊆ A:

x ∈ A ⇒ x ∈ B

x ∈ B ⇒ x ∈ A

In brief, x ∈ B if and only if x ∈ A. Intuitively, A and B have the same elements.

3. An empty set E has no elements.

Axioms. This isn’t a course in set theory, so we won’t say much. Instead, a sensible approach
is to learn the material informally through examples and by proving simple theorems, sort
of ignoring the axioms.
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But we do note that in order to avoid paradoxes we must insist that

x ∈ x

is a meaningless statement for any mathematical object x. Intuitively, x cannot be an el-
ement of itself, because it would then simultaneously have two different levels of organization.
However,

x ∈ {x}

is always true; and
x ⊆ x

is also perfectly okay, so long as x itself is a set.

Theorem. The empty set is unique: if E and E ′ are empty sets, then E = E ′.

Proof. Convince yourself. 2

Notation. When an interesting object is shown to be uniquely specified, it often deserves
a special notation. The empty set is denoted

∅ .

Exercise. For any set A whatsoever, prove that

∅ ⊆ A .

More Definitions.

4. The union of two sets A, B is the set of all objects in either A or B (or both):

A ∪B = {x : x ∈ A or x ∈ B}.

5. The intersection of sets A, B is the set of all objects in both A and B:

A ∩B = {x : x ∈ A and x ∈ B}.

6. Sets A and B are disjoint if A ∩B = ∅.
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Remark. There are similar definitions for any finite family of sets

A1 ∪ . . . ∪ Ak or A1 ∩ . . . ∩ Ak,

or even any indexed family of sets At, where t ∈ I. The indexing set I could be infinite. In
general then, we write

⋃
t∈I

At or
⋂
t∈I

At.

***

Sometimes we can explicitly enumerate the elements of a set, as in

A = {5, 6, 7},

or even in

S = {1, 4, 9, 16, . . .}.

(The use of “. . .” assumes the pattern is clear.) Maybe an explicit description is better as in

S = {n ∈ N : n = a2, for some a ∈ N}.

Thus S is a subset of the natural numbers N.

Exercises.

1. Let A = {2, {1}}, B = {{∅, {3}}}.

(a) What are the elements of A?

(b) What is the cardinality of A (number of distinct elements)?

(c) What are the distinct elements of B? What is its cardinality?

2. (a) What is cardinality of ∅?
(b) Of {∅}?
(c) Of {∅, {∅}}?

3. We know ∅ ⊆ N ⊆ Z> ⊆ Z ⊆ Q ⊆ R ⊆ C. How many subset relations of the form
A ⊆ B are there between these sets? Give the standard names for each of these sets.
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4. Let

A = {5, 6, 7}
B = {5, 7}
C = {6, 6, 5, 7, 5, 7}

True or False:

A = B

A = C

C ⊆ A

C ⊆ B

B ⊆ A

B 6= A

B ∈ A

A ⊆ A

{6} ⊆ A

{6} ∈ A

6 ⊆ A

6 ∈ A

∅ ⊆ A

∅ ∈ A

5. Is it possible that

x ∈ A and x ⊆ A

are both true?

6. Find out what the subset lattice of a set A is and sketch it, when A = {1, 2, 3}.
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Definitions. If a set A comes with an operation, say “+”, then we can ‘add’ subsets of A.
Suppose B ⊆ A and C ⊆ A (two subsets of A). Then by definition

B + C := {x+ y : x ∈ B and y ∈ C}.

The sets B, C could be finite or infinite. In particular, B could be a singleton (cardinality
1), say

B = {b}.

Then instead of {b}+ C we write b+ C for more pleasant reading.

Similarly, if set A comes equipped with a multiplication “×”, we might suppress the opera-
tion:

BC := {xy : x ∈ B and y ∈ C}
bC := {by : y ∈ C}.

Exercises (Continued).

6. Describe, say by a ‘clearly understood’ listing, these subsets of the integers Z.

(a) 3Z
(b) 1 + 2Z
(c) 12Z+ 21Z
(d) For specific positive integers a, b, what is aZ+ bZ in general?

7. Describe these subsets of the reals R:

(a) Z ∩ (
√
2Z).

8. Euclidean Geometry.

A typical triangle will be denoted 4ABC. For simplicity, let A,B,C denote the angles
and let a, b, c be the lengths of the opposite edges. Let

U = {4ABC : C = 90◦}
V = {4ABC : a2 + b2 = c2}

In fact U = V .

(a) Rephrase U ⊆ V as a geometrical theorem. What is its conventional name?

(b) Restate V ⊆ U as such a theorem. (This is the converse to the theorem in (a).)
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(c) Restate U = V using ‘if and only if’ lingo. Using ‘necessary and sufficient’ lingo.

9. In a vector space, like

R2 = {~u = [x, y] : x ∈ R, y ∈ R}

we have two operations:

~u1 + ~u2 = [x1, y1] + [x2, y2] := [x1 + x2, y1 + y2]

t~u = t[x, y] := [tx, ty]

(component-wise addition and scalar multiplication, for scalars t ∈ R).
Give geometrical descriptions for

(a) R[2, 1] (strictly speaking, we here mean R{[2, 1]})
(b) [−1, 1] + R[2, 1]
(c) Z[1, 0] + Z[0, 1]

(d) Z[1, 0] + Z

[
− 1

2
,

√
3

2

]
(e) {[x, y] : x ∈ Z and y ∈ Z}
(f) {[x, y] : x ∈ Z or y ∈ Z}
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Definition. For any two sets A,B, the (Cartesian ) product A × B is the set of all
ordered pairs (a, b) such that a ∈ A and b ∈ B:

A×B := {(a, b) : a ∈ A, b ∈ B} .

Example.

{0, 1} × {x, y, z} = {(0, x), (0, y), (0, z), (1, x), (1, y), (1, z)} .

Similarly,
A1 × · · · × An

is the set of all ordered n-tuples (a1, . . . , an) with aj ∈ Aj, 1 6 j 6 n. In the special
case that all sets are the same, say A = A1 = . . . = An, we often write An instead.

Example.
R2 = { [x1, x2] : x1, x2 ∈ R} .

(The square brackets are commonly used as a visual reminder that the ordered pair is
to be treated as a vector.)

Definition. A relation R from a set A to a set B is merely any subset of A×B:

R ⊆ A×B

To indicate that (a, b) ∈ R we write

aRb .

As we shall see below, a function f : A → B is a very special sort of relation.

Very often we have A = B; extremely useful relations in this case are equivalence
relations and partial orders on A.
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Exercises. Using this rather abstract point of view, analyze the following familiar
relations.

(a) The usual total order ‘<’ on the reals R can be defined as follows:

< := {(x, y) ∈ R2 : y − x is positive.}

(Presumably in constructing the reals we have somewhere been told which of them
are ‘positive’). Sketch < as a subset of R2.

(b) On the positive integers N define the usual divisibility relation ‘|’ by a|b if a divides
b (without remainder).

Sketch | as a subset of N2 (itself a subset of R2).
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2 Functions

1. Definitions. Let X, Y be two sets, finite or infinite. A function f is any rule4 which
associates to each element x in X exactly one element, denoted f(x), in Y . In brief,
we write

f : X → Y .

The set X is the domain of f .

Note that the range
f(X) := {f(x) |x ∈ X}

could be a proper subset of Y . If in fact f(X) = Y , then we say f is onto or surjective.

If f maps distinct inputs to distinct outputs, i.e.

x1 6= x2 ⇒ f(x1) 6= f(x2) ,

then we say that f is 1−1 (or injective). In contrapositive fashion, we could equivalently
say that

f(x1) = f(x2) ⇒ x1 = x2 .

Example. It is useful to consider the airplane booking function f from the passenger
set X on a particular flight to the seat set Y on the airplane: f(x) is the seat occupied
by person x, for each passenger x ∈ X. Thus, f onto means that every seat is filled, and
f 1− 1 means that no two people are assigned the same seat (the flight is not stupidly
booked). Clearly, if both conditions hold, there is exactly one seat for each passenger;
in other words, the number of seats is the same as the number of passengers. Note that
you could ‘see this’ by simply looking at the cabin, without counting or knowing the
number of passengers or seats. These considerations motivate the following definitions
and observations.

More Definitions. A function f : X → Y is bijective if it is both 1− 1 and onto.

We observe that the domain X and range Y must then have the same cardinality, even
if both are infinite. Put otherwise, f defines a 1–1 correpondence between the elements
of X and the elements of Y . In this manner, by construction of suitable functions,
we can assess whether certain infinite sets have or do not have the same ‘number’ of
elements.

4If you object to the somewhat vague term ‘rule’, you should note that it is quite possible to give a very
precise, but less intuitive definition: the function f is actually a subset of X × Y , with the property that
each x ∈ X is the first entry in exactly one ordered pair (x, y) ∈ f . In other words, f is a special sort of
relation from X to Y , so

f ⊆ X × Y .

In fact, the set inclusion has to be proper here, unless Y has what cardinality?
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Any bijection f : X → Y has an inverse

f−1 : Y → X

defined by f−1(a) = b whenever f(b) = a, for a ∈ Y, b ∈ X. (Just unseat each
passenger.)

2. Exercises on Functions

(a) When f : X → Y is bijective, check that the above description of f−1 really does
define a function. (You have to show that for each a ∈ Y there exists exactly one
b ∈ X such that f(b) = a.)

Also check that f−1 is itself bijective, and that its inverse is f . This proves that

(f−1)−1 = f .

(b) Exhibit a bijection from the open real interval (0, 1) = {x ∈ R : 0 < x < 1} to R
itself.

(c) Exhibit a bijection between the the set N (of all natural numbers) and the proper
subset Y = {2, 4, 6, 8, . . .} of just the even natural numbers.

(d) If X is finite, say with n elements, how many bijections f : X → X are there?
(Think: given n people in n chairs, how many ways can they rearrange them-
selves?)

3. More Definitions. The identity function

1 : X → X

satisfies 1(x) = x for all x ∈ X. We write 1X if we need to emphasize the domain X.

Exercise. Prove that 1 is a bijection.

4. Definition Suppose f : X → Y, g : Y → W are any functions. Then we define the
composite function

g◦f : X → W

by g◦f(x) := g(f(x)), for all x ∈ X.

Remark. In certain contexts (but not first year calculus!), we write gf instead for the
composite function.

Exercises. (a) Convince yourself that this definition makes sense.

(b) For f : X → Y , prove that f ◦ 1X = f = 1Y ◦ f .
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5. Still More Exercises on Functions. Suppose f : X → Y, g : Y → W, h : W → V
are any functions, subject to varying requirements below. Prove that

(a) In all cases
(h◦g) ◦f = h ◦ (g◦f)

(both mapping what set to what set?). Thus composition is always associative,
with no assumptions concerning 1-1 or onto.

(b) If f, g are 1-1, so is g◦f .
(c) If f, g are onto, so is g◦f .
(d) If f, g are bijective, then so is

g◦f : X → W.

Thus, in this case there is an inverse

(g◦f)−1 : W → X.

Rewrite

(g◦f)−1 = .

(e) Suppose f : X → Y, g : Y → X, no longer necessarily 1-1 or onto. Also suppose
that

f ◦g = 1Y ,

the identity function on Y . Prove that g is 1-1 and f is onto.

(f) Suppose f : X → X. Thus f 2 := f ◦f is defined. More generally, for an integer
n > 1, we write

fn := f ◦f ◦ . . . ◦f︸ ︷︷ ︸
n repeats

.

(By the associativity mentioned earlier, this notation makes sense.)

Now suppose fn = 1X for some integer n > 1. Use the previous exercise to show
that f has to be bijective; and write f−1 in another way.
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3 Groups

A group is a set G equipped with a binary operation satisfying a few key properties. The
operation is typically written +,×, ∗, ◦, etc.

3.1 Binary Operations

The idea of a binary operation on a set G is that given a, b ∈ G (allowing a = b) we can
produce a new element

a ∗ b (also in G).

Remarks.

1. Think: apple * apple = apple; do you know any non-binary operations?

2. We emphasize that a ∗ b is uniquely given once a, b are known.

3. We typically must define a ∗ b. So it is always crucial to check that arbitrary choices,
if any, in calculations do not actually affect the final outcome a ∗ b. In short, our
description of a ∗ b must be well-defined.

4. Thus ∗ is really a function

∗ : G×G → G

5. Example.
+ : Z× Z → Z.

We have +(5, 3) = 8, +(3,−7) = −4 and +(−13, 0) = −13. Of course, for brevity we
usually write a+ b instead of +(a, b).

3.2 Some Desirable Properties for the Operation (in a Group)

Let’s return to a general group G; write a ∗ b for a, b ∈ G. Based on our experience with
familiar examples, we want a ∗ b to have the following natural properties:

1. (a ∗ b) ∗ c = a ∗ (b ∗ c) , ∀a, b, c ∈ G. (The operation ∗ is associative.)

2. There exists in G some special element e such that

e ∗ a = a for all a ∈ G .

3. For each a ∈ G, there exists an element b (depending on a) such that

b ∗ a = e ,

where e is an element mentioned in requirement (2).
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Remarks:

1. Properties (1), (2), (3) for a binary operation ∗ on a set G actually define a group.

2. We do not assume a ∗ b = b ∗ a always holds, though it may occasionally do so. For
example, a ∗ a = a ∗ a for all a ∈ G.

In a commutative (or abelian) group G we do have

a ∗ b = b ∗ a ∀a, b ∈ G .

3.3 Some Little but Important Theorems for all Groups

Let a, b... ∈ G be typical group elements. Let e be an element as defined in requirement (2)
above.

1. Theorem. If for some a ∈ G we have a ∗ a = a, then a = e.
Proof. By property (2) there exists a b such that b ∗ a = e. Thus

e = b ∗ a
= b ∗ (a ∗ a)
= (b ∗ a) ∗ a
= e ∗ a
= a .

�

2. Theorem Suppose ẽ ∈ G also satisfies ẽ ∗ a = a for all a ∈ G. Then ẽ = e.

Proof. ẽ ∗ ẽ = ẽ, so ẽ = e by the preceding theorem. �
Meaning. There is a unique element e ∈ G such that

e ∗ a = a ∀a ∈ G .

Definition.: The unique element e is called the identity in G.

3. Theorem. If b ∗ a = e, then a ∗ b = e.

Remark. Thus some commuting must happen.

Proof.

(a ∗ b) ∗ (a ∗ b) = a ∗ [b ∗ (a ∗ b)]
= a ∗ [(b ∗ a) ∗ b]
= a ∗ [e ∗ b]
= a ∗ b

So, by the first theorem, a ∗ b = e. �
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4. The assumption in defining property (2) for groups is that e ∗ a = a, ∀a ∈ G.
Compare that with the following

Theorem : a ∗ e = a ∀a ∈ G.

Remark: again this shows that a little more commuting is forced.

Proof. By property (3), there exists an element b ∈ G such that b ∗ a = e. Thus

a ∗ e = a ∗ (b ∗ a)
= (a ∗ b) ∗ a
= e ∗ a
= a .

�
Remark: The identity e thus commutes with all elements of G.

5. Theorem Given any a ∈ G, there exists exactly one element b such that b ∗ a = e.

Proof : Suppose that b ∗ a = e and c ∗ a = e. From above we therefore have a ∗ b = e
and a ∗ c = e. So:

c ∗ (a ∗ b) = c ∗ e
(c ∗ a) ∗ b = c

e ∗ b = c

b = c

�
Definition: The unique element guaranteed for each a by this theorem is called is the
inverse of a, and is denoted a−1. Thus we have already proved that

a ∗ a−1 = a−1 ∗ a = e .

6. Theorem-Exercise Guess and prove that ∀a, b ∈ G,

(a ∗ b)−1 = .

Hint: if your guess for the inverse works, it must be the unique inverse.

3.4 Examples.

In each case, indicate whether the given set and operation do yield a group. If not, indicate
which of properties (1), (2) or (3) fails. When you do obtain a group, clearly point out the
identity and describe the inverse of each element a.
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the set G the operation ∗
Z +
Z −
Z ·
Q +
R +
R −
C −
Q∗ ·

M2(R) +
M2(R) ×
{±1} ·

{1, e
2πi
3 , e

4πi
3 } ·

Cn = {e
(2πi)k

n , 0 6 k 6 n− 1} ·

Note that Q∗ denotes the non-zero rational numnbers. And M2(R) is the collection of all
2× 2 real matrices.

16



4 Isomorphic Approaches to the Same Group

It is often possible, and fruitful, to look at one and the same group from several points of
view:

Symmetry
GroupGroup

Permutation Matrix
Group

Abstract
Group

At the heart
of modern
geometry

Easier
calculations
(in finite case,
on computer)

Can use
machinery of
linear algebra

To manufacture
groups very
compactly
(like a seed
generates a plant)

Our main concerns

In geometry, the idea of symmetry is crucial. The parallel idea in algebra is the matrix group.

5 Motion and Symmetry

We let E denote (the set of points in) the Euclidean plane. In fact, many of our results will
extend to Euclidean spaces of higher dimension.

So let us try to make mathematical sense of motions and symmetry.

1. Think about motion of a figure in the plane. Freeze a couple of positions.

P

Q
R

Later (freeze)

Earlier (freeze)

P’

R’

Q’
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Or consider symmetry or congruence:

P

Q Q’

  = P’
3

45

3 4

5

A B

C

B

C ’A’

’

In all these examples, the geometrical operation gives a function f mapping P to P ′, A
to A′, etc. The function preserves shape; specifically, it preserves the distance between
pairs of points in the figure:

PQ = P ′Q′

for all points P , Q in the figure. Since the distance between constituent points is
invariant, the shape as a whole is unchanged.

Every motion or symmetry can be reversed: just reverse the arrows and map P to P ′,
etc. We get the function f−1.

The idea of similarity is much like this, except that every distance now is rescaled by
a constant positive factor.

3

45

A B

C

B

C

6
8

10

A’

’

’

2. What we have then are certain nice functions mapping a subset of E to another (possi-
bly the same) subset of E. It is convenient to simply take functions mapping all of E to
E, since we can then simply restrict our attention to any particular subset of interest.

For example, a symmetry of the square is really descended from an isometry of the
whole plane; but we usually ignore what that isometry does outside the square.
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3. Such functions must have some very basic properties to preserve the integrity of the
plane. We cannot collapes two points to one: f must be 1 − 1 (or injective). And
f must not leave any point of the plane missing after the fact: it must be onto (or
surjective).

In short, we consider bijections
f : E → E,

typically with some nice property. For example, an isometry of E is any bijection which
preserves all distances.

Any such bijection has an inverse

f−1 : E → E

defined by f−1(A) = B whenever f(B) = A, for points A,B ∈ E. In effect, you just
reverse the arrows in the above pictures.

Any bijection defines a 1− 1 correspondence between the points of its domain and the
points of its range. These sets therefore have exactly the same cardinality, whether
infinite or not.

In our considerations, the domain and range will usually be the same set E.

4. The bijections from X to Y have properties which remind us of the group axioms.
However, we do need an identity and this forces X = Y .

Definition Let X be any non-empty set, finite or infinite. Let

SX = {all bijections f : X → X},

equipped with composition f ◦g as operation.

(a) Verify that f ◦g is a binary operation on SX .

(b) Verify that SX is a group. (Mostly this was done in earlier exercises.)

Thus we have lots of groups of a particular kind: SX is called the symmetric group on
set X.

Exercises on Symmetric Groups

(a) If X is finite, say with n elements, how many bijections f : X → X are there?
(Think: given n people in n chairs, how many ways can they rearrange them-
selves?)

(b) If |X| = n (meaning “X has n elements”) then SX has what order?

(c) Could SX ever be a commutative group?
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6 Subsets and subgroups

Here G is any group, finite or infinite, with the operation written as multiplication. So ab
could mean a× b, a+ b, etc.

1. (a) Suppose A,B are non-empty subsets of G. Then we define

AB := {ab : a ∈ A and b ∈ B}.

In short, take all possible products, first an element of A, then an element of B.

(b) A or B could have one element g ∈ G. Then we usually write

Ag (instead of A{g})
gB (instead of {g}B).

(c) Similarly, we define

A−1 := {a−1 : a ∈ A}.

(d) Exercises. Suppose A,B,C are subsets of G.

1.1 Show (AB)C = A(BC) and (A−1)−1 = A.

1.2 Show that A, Ag, gA have the same size.

1.3 Give an example of subsets A,B of S3 with |A| = 3, |B| = 2 but |AB| 6= 6.

1.4 Rewrite the objects in exercises 1.1 and 1.2 in additive notation .

1.5 Show that GG = G.

2. SUBGROUPS

(a) A subset H of G is a subgroup if it is a group in its own right, with the operation
inherited from G.

Note that associativity is inherited for any subset. Thus for H to be a subgroup
we really mean:

(i) 1 ∈ H.

(ii) a, b ∈ H =⇒ ab ∈ H
(i.e. elements in H also have their product in H, in short the group operation
is closed on H).

(iii) b ∈ H =⇒ b−1 ∈ H
(i.e. elements in H have inverses also in H – inverting is also closed on H).

(b) Exercises.

2.1 Subgroup Test. A non-empty subset H of G is a subgroup if and only if

a, b ∈ H =⇒ ab−1 ∈ H.

2.2 H is a subgroup if and only if HH−1 ⊆ H.

2.3 If H is a subgroup, then H = H−1 and HH = H.

20



2.4 Example: Let

G = {2k : k ∈ Z}

= {. . . 1
8
,
1

4
,
1

2
, 1, 2, 4 . . .}

with ordinary multiplication.

Exercises:
2.41 Show that G is a group. Thus G is a subgroup of the positive reals,

with ordinary multiplication.

2.42 Convince yourself that G is isomorphic to (Z,+). In particular, G is
abelian.

2.43 Find a subset H ⊂ G such that HH = H but H is not a subgroup.

2.5 (Compare 2.43 above). Suppose H is a finite subset of any group G, and

HH = H.

Show that H is a subgroup.

(c) Definition If a ∈ G, then the cyclic subgroup generated by a is

〈a〉 := {ak : k ∈ Z} .

(Consider example 2.4 above).

(d) More Exercises.

2.6 Show that 〈a〉 actually is a subgroup and is, furthermore, abelian.

2.7 Give examples of G and a ∈ G in which 〈a〉 is infinite. Likewise finite.

Definition. The order of any a ∈ G can be defined as the smallest positive
integer n (if any exists) for which an = 1. We write

|a| = n.

If no such n exists, we say a has infinite order: |a| = ∞.

2.8 Exercise. Show that |a| = |〈a〉|. (The order of a also equals the number of
elements in the subgroup generated by a).

3. COSETS

When a subset H of G is actually a subgroup, the sets Hg are particularly nicely
behaved. For any g ∈ G, we say:

Hg is a right coset of H
gH is a left coset of H.

Right and left cosets have analogous properties. So for now let’s look only at right
cosets.
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(a) We have already seen that, for any g ∈ G,

|gH| = |H| = |Hg|.

That is, all cosets have the same size, namely the size of H.

Indeed, any subgroup H is itself a coset (of itself):

H = H1.

(b) Exercise 3.1. Let S3 be the group of all permutations on three things, say
{1, 2, 3}. We call S3 the symmetric group of degree 3. Its order is 3! = 6, and

S3 = {(1), (123), (132), (12), (13), (23)}.

Let H = 〈(12)〉 = {(1), (12)} (a cyclic subgroup).

Find − all right cosets of H.
− a set of right coset representatives (namely, pick an individual element

from each coset).
− all left cosets of H.

Are the left and right cosets identical?

Exercise 3.2. Try to make Gap find all right cosets of H in S3 (from Exercise
3.1). Try to make Gap find a set of right coset representatives.

(c) Theorem: (i) Ha = Hb if and only if ab−1 ∈ H.
(ii) aH = bH if and only if b−1a ∈ H.

Proof. Part (ii) is similar to part (i). In part (i), there are two things to show.

Assume Ha = Hb. Since 1 ∈ H
1a = hb, for some h ∈ H.

Thus ab−1 = h ∈ H.
Assume ab−1 ∈ H. We must show Ha = Hb.
Suppose x ∈ Ha, say x = ha. Then

xb−1 = h(ab−1) = hh′, where h′ ∈ H.

So xb−1 = h̃ ∈ H

so x = h̃b ∈ Hb.
Thus Ha ⊆ Hb.

Similarly Hb ⊆ Ha: we’re done.

(d) Coset Representatives

If Ha is any coset, then “a” is called a coset representative for the coset Ha.
There can be many coset representatives, since Ha = Hb if ab−1 ∈ H. Thus, if
“a” is one representative, then any ha = b is another (h ∈ H).

In particular, H = Hb whenever b ∈ H.

(e) Theorem. Any two right cosets are either identical or disjoint. (The same is
true for two left cosets.)
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Proof. Let Ha and Hb be two cosets of the subgroup H.

If they are disjoint (meaning no elements in common) we are done:

Ha ∩Hb = ∅.

So suppose Ha and Hb have at least one element in common, say

x ∈ Ha ∩Hb.

The point is that this forces the cosets to be completely the same. Indeed,

x ∈ Ha, so x = h1a where h1 ∈ H
and x ∈ Hb, so x = h2b where h2 ∈ H.

So a = h−1
1 x, b = h−1

2 x, b−1 = x−1h2,

and thus:

ab−1 = (h−1
1 x)(x−1h2)

= h−1
1 h2 ∈ H.

By the Theorem 3(c), Ha = Hb.

(f) Theorem. Every element of G belongs to exactly one coset of H.

Proof. Say g ∈ G. Then g = 1g, so g ∈ Hg. By Theorem 3(e), g cannot belong
to two different cosets. Yes, maybe Hg = Ha, but that is the same coset. �

Suppose now that there are finitely many cosets of the subgroup H in G. This
happens when G itself is finite, but also in other cases.

We may represent the k cosets by

1 = a0, a1, a2, . . . , ak−1,

so that the different cosets are H = H1, Ha1, Ha2, . . . , Hak−1.

By Theorem 3(f), we can represent the situation diagrammatically like this:

G H Ha1 Ha2 Hak−1

= H1 . . .

But all cosets Haj have the same size, namely |H|.
So

|G| = |H|+ |H|+ . . .+ |H|
= k|H|.

We have therefore proved an expected and important result:

Lagranges Theorem: If H is a subgroup of a finite group G, then |H| divides
|G|, and the index
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[G : H] :=
|G|
|H|

is the number of right cosets of H. (Also, it is the number of left cosets.)

(g) Recall that any element a ∈ G generates a cyclic group 〈a〉. We defined the order
of a to be the smallest positive integer n such that

an = 1.

(And you should prove that this order equals the size of the corresponding cyclic
subgroup.)

Exercise 3.2. Suppose that G is finite and a ∈ G. Then |a| divides |G|.
Exercise 3.3. Suppose that |G| = p, a prime. Then G is a cyclic group.

Up to isomorphism, there is only one group of prime order p. It is cyclic, hence
abelian.

Exercise 3.4. Let G = R2, with addition. So

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2).

(.1) Show that G is an abelian group. What is the (unique) identity element? Of
course, G is very infinite.

(.2) Let H = {(x, 2x) : x ∈ R}. Show that H is a subgroup of G. Describe H
and its right cosets geometrically. In light of this interpret 3(c), 3(e), 3(f).

(h) Exercise 3.5. Suppose G is a finite group and H,K are subgroups with K ⊆
H ⊆ G.

Show: [G : K] = [G : H] · [H : K].

Note:

index is [G : K]


G
| index is the integer[G : H]
H
| index is the integer[H : K]
K

(i) Exercise 3.6. Let G be any group, perhaps infinite.

(i) Suppose H1 and H2 are subgroups. Show that H1 ∩H2 is also a subgroup.

(ii) More generally, suppose {Ht : t ∈ I} is any collection of subgroups. (That
is, the index set can be finite or not; the individual groups can be finite or
not.) Show that

H =
⋂
t∈I

Ht

is a subgroup of G.
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4. Let X be any subset of the group G. X need not be a subgroup. By a word in X we
mean any product.

xε1
1 xε2

2 . . . xεk
k

where εj = ±1 and each xj ∈ X. For example,

1 = x1
1 · x−1

1

x3
1 = x1

1x
1
1x

1
1

x1x
−1
2 x1x3x

−1
4

are words in X = {x1, x2, x3, x4}.
The subgroup generated by X is the set of all words in X. We write

〈X〉 = {words xε1
1 . . . xεk

k in X}.

(a) Exercise 4.1. Verify that 〈X〉 is indeed a subgroup. Hint: Use exercise 2.1.

(b) Exercise 4.2. Show that 〈X〉 is the intersection of all subgroups of G which
contain X. (There is at least one such subgroup, namely G itself.)

Remark: this provides an alternative definition for the subgroup generated by a
subset X of the group G.

Intuitively, we may therefore say that 〈X〉 is the smallest subgroup which contains the
set X.

5. Normal Subgroups

Again H is some subgroup of G, perhaps finite or not.

(a) We look at right cosets, though Theorem 6(e) below shows that we could just as
well use left cosets.

(b) Now H = H1 is itself a coset, and

HH = H.

In fact, for any coset Hb (b ∈ G) we have

H(Hb) = (HH)b = Hb.

Thus H acts like an identity for multiplication of cosets.
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(c) Someone’s wonderful idea was to try to make a new group, denoted

G/H

with:

(i) the cosets Hb (b ∈ G) as individual elements.

(ii) coset multiplication as operation.

(iii) the coset H itself as identity.

(d) The key difficulty in verifying that this even makes sense is that for certain sub-
groups H, multiplication of cosets need not be a closed operation.

Exercise 5.1. G = S3 (order 6)
H = 〈(12)〉 (order 2)
a = (23) b = (13)

Find Ha, Hb then show that HaHb is not even a coset.

(e) Thus we have good reason to study subgroups H for which coset multiplication
is closed.

Definition. H is a normal subgroup of G, written

H �G,

if coset multiplication is closed.

There are many useful and equivalent ways to say the same thing. Some of these
equivalent ways are given in the next theorem.

It will be useful now to recall that

x ∈ Hg if and only if Hg = Hx.

6. Theorem (Criteria for Normality )

The following items are equivalent for a subgroup H of G.

(a) H is normal in G [meaning “coset multiplication is closed”].

(b) (Ha)(Hb) = Hab for all a, b ∈ G.

(c) a−1Ha ⊆ H for all a ∈ G.

(d) a−1Ha = H for all a ∈ G.

(e) Ha = aH for all a ∈ G.
Caution! This need not mean that a commutes with all individual elements of H.

(f) Every right coset of H equals some left coset.

Proof. We must show that each of the six conditions implies each of the five others,
for a tentative total of 30 separate proofs!! However, we get the same result much more
economically by showing

(a) ⇒ (b), (b) ⇒ (c), (c) ⇒ (d), (d) ⇒ (e), (e) ⇒ (f) and (f) ⇒ (a).
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Here are the details.

(a) ⇒ (b) Assume Ha, Hb are any cosets, so that

(Ha)(Hb) = Hg for some unknown g ∈ G.
But then (1a)(1b) = ab ∈ Hg, so

Hg = Hab
Thus (Ha)(Hb) = Hab.

(b) ⇒ (c) For any a ∈ G,

Ha−1Ha = H(a−1a) = H1 = H.
Now let x ∈ a−1Ha. Then x = a−1ha, for some h ∈ H.

Thus x = 1a−1ha ∈ Ha−1Ha = H.
So x ∈ H.

Since x was arbitrary in a−1Ha, we get

a−1Ha ⊆ H.

(c) ⇒ (d) For any a ∈ G, a−1Ha ⊆ H. In particular, this is also true when a is
replaced by a−1:

(a−1)−1H(a−1) ⊆ H
aHa−1 ⊆ H

so a−1(aHa−1)a ⊆ a−1Ha
so 1H1 ⊆ a−1Ha

so H ⊆ a−1Ha ⊆ H
Thus a−1Ha = H.

(d) ⇒ (e) If a−1Ha = H, then

a(a−1Ha) = aH
1Ha = aH
Ha = aH

(e) ⇒ (f) Every right coset Ha = aH, a left coset.
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(f) ⇒ (a) Assume every right coset equals some left coset and consider any a, b ∈ G.
We want to multiply two right cosets Ha and Hb. But the left coset aH is some right
coset, say

* aH = Hc, for some unknown c.

Thus

(Ha)(Hb) = H(aH)b

= H(Hc)b

= (HH)(cb)

= H(cb),

so that right coset multiplication is closed.

Remark: Since a ∈ aH = Hc, we could have chosen c = a, obtaining aH = Ha, then

(Ha)(Hb) = H(ab).

This finishes the proof. �

7. The Factor Theorem

Suppose H �G (H is a normal subgroup of G). Then

G/H (the family of right cosets of H)

forms a group with coset multiplication. The identity is H, and Ha has inverse H(a−1).

Proof. We know the operation is closed. It’s easy to check associativity, the identity
and inverses. �

Remark. (i)G/H is called a quotient group, or sometimes a factor group.

(ii) By Theorem 6(e), we could just as well use left cosets.

8. Exercises

(a) Exercise 8.1. G � G and {1} � G. Thus, the trivial subgroups of G are each
normal.

(b) Exercise 8.2. If G is abelian, then every subgroup is normal.

(c) Exercise 8.3. If [G : H] = 2, then H �G.

(d) Exercise 8.4. If H �G and [G : H] = k, then

|G/H| = |G|
|H|

.
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(e) Generally a group G has lots of subgroups, say the cyclic subgroups generated by
one element a, and also subgroups generated by two or more elements.

Also, by Exercise 8.2, every subgroup of an abelian group is normal. However,
for non-abelian groups G it sometimes happens that normal subgroups are scarce.
Such groups G are interesting and important: we call them simple.

Definition. A group G is simple if it has no non-trivial normal subgroups. (Thus,
{1} and G are the only normal subgroups.)

Remark: in a sense, simple groups play the same role in group theory as prime
numbers play in number theory. The actual details in either case are very deep
and complicated.

(f) Exercise 8.5. Characterize all cyclic groups which are simple. (Hint: 〈a〉 of
order n or order ∞ is abelian: use Exercise 8.2.)

(g) Exercise 8.6. If {Ht : t ∈ I} is any family of normal subgroups of G, then

H =
⋂
t∈I

Ht

is also a normal subgroup.

Remark. In particular, if H1 and H2 are normal, so is H1 ∩H2.

(h) Definition. If x, b ∈ G, then x−1bx is called a conjugate of b. If S is any subset
of G, let

S̃ = {x−1sx : s ∈ S, x ∈ G}

be the set of all conjugates of elements of S.

(i) Exercise 8.7. Show that H = 〈S̃〉 is a normal subgroup of G and that H ⊆ S.

Show that H is the intersection of all normal subgroups of G which contain S.
(In some sense, H is the smallest normal subgroup containing S.)

Definition. H = 〈S̃〉 is the normal closure of G.
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7 Some useful mappings on the plane E.

1. The reflection r in a given line m

Definition For each point P let r(P ) be the point on the line through P and perpen-
dicular to m, but an equal distance from m on the opposite side:

m

P

P

Q

Q

DD = 

=  r(P)

(a) r is well-defined (that is, there can’t be two such perpendiculars; but consider the
north pole and equator on the sphere; something subtle is going on!). This is a
purely geometric definition, valid in the non-Euclidean plane, too. In particular,
we need not use coordinates as part of the definition.

(b) For each point P ∈ E
r(r(P )) = P ,

that is,

r ◦ r = 1

where 1 = 1E is the identity mapping on E. Briefly we write r2 = 1. This algebraic
condition actually implies that r is a bijection; and we have r = r−1. A mapping
like r which has period 2 is called an involution.

(c) A point D is fixed or invariant if r(D) = D. For a reflection r this occurs if and
only if D ∈ m.

(d) r preserves distance. For ease of notation let

P ′ = r(P )

Q′ = r(Q).

Using a few applications of SAS we conclude that PQ = P ′Q′ in the above
diagram, regardless of the location of points P and Q relative to m. (Exercise:
do the case in which P and Q lie on opposite sides of m.) Thus r is an isometry:

(e) Definition: An isometry (of the plane E) is a distance preserving bijection
f : E → E.
Intuitively isometries preserve shape because of this. In this regard, it is useful
to note the following
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(f) Lemma: The collection of all points X equidistant from two distinct points P,Q
is a line (the perpendicular bisector of segment PQ).

Proof. Uses only a few applications of basic congruence theorems, such as SAS.

�
(g) Thus any isometry (in particular any reflection)

• maps a circle to a (congruent) circle of the same radius

• maps a straight line to a straight line

• maps a triangle 4ABC to a congruent 4A′B′C ′

(h) A reflection r is opposite: see the above figure. P,Q,D form a clockwise cycle,
whereas their images P ′, Q′, D′ form an anticlockwise cycle.

(i) r is defined on all of E; in typical applications we restrict to a subset of interest

Here the subset is an isosceles
triangle, which has bilateral
symmetry.

2. The rotation s with centre C and angle α

Definition. For each point P ∈ E let P ′ = s(P ) be the same distance from C as P
and located so that

]PCP ′ = α.

P

Q

  −  *α

  −  *α

P

Q

C  =  C *

(a) Again it is easy to check that this description is well-defined and that s is a
bijection. Once more an application of SAS shows that s is an isometry. You can
see from the figure that 4PQC and 4P ′Q′C ′ have the same orientation. (Note
that the centre C = C ′ is invariant.) Thus a rotation s is a direct isometry.
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(b) Note that we must distinguish clockwise from anticlockwise rotations. We do this
in the usual manner, taking

α : ⊕ if anti-clockwise
	 if clockwise

.

(c) If ŝ is the rotation with the same centre C, but with the opposite angle −α, then
s(P ) = P ′ implies ŝ(P ′) = P . Thus

s ◦ ŝ = 1 = ŝ ◦ s.

Therefore the inverse of a rotation s is also a rotation; and s−1 has the same
centre as s, but the opposite angle.

(d) If α = 0◦, ±360◦, n(360◦) and C is any centre, then

s = 1 .

Thus the identity is actually a rotation with ambiguous centre.

Otherwise, if α 6= n(360◦), where n ∈ Z, then s fixes only C.

(e) In any rotation, the angles α+n(360◦) all define the same rotation, here considered
to be a fixed mapping on the plane.

(f) Definition: The half-turn h = hC with centre C is the rotation at C with angle
180◦.

Observe that every half-turn is an involution.

3. There could be other kinds of isometry. So far, we have two distinct species. In fact, it
will follow from the three reflections theorem and the nature of Euclidean parallelism,
that there are just two more species of Euclidean isometries: translations and glides.

4. The translation t with vector ~AB

Recall that vector ~AB is the directed line segment from point A (the tail) to point B
(the head).

Definition The translation t with vector ~AB maps point P ∈ E to the point P ′ =

t(P ) located so that
−→
AB,

−→
PP ′ are equal and parallel, in the same sense. (We say that

these two vectors are equal, of course.)

P

Q
R

A

B

P

QR
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(a) You may check that t is an isometry. The verification uses properties of parallel
lines and hence is heavily dependent on Euclidean parallelism.

(b) t is direct: triangles PQR and P ′Q′R′ have the same orientation.

(c) The inverse of translation t is another translation; and t−1 has vector ~BA = − ~AB.

(d) The identity 1 can be considered anew as a translation with the vector ~0 = ~AA.

5. The glide (or glide reflection) g with non-zero axial vector ~AB

Definition The glide g with axial vector ~AB is the product of the translation t with
vector ~AB and the reflection r in the line through A and B. (We insist that ~AB 6= ~0
merely to guarantee that A, B are distinct points.) Thus

g = rt .

(a) In this set up we actually have rt = tr. Prove this! Thus the definition is not as
touchy as one might think.

(b) The line through A and B is callled the axis of the glide.

(c) Since we have defined a glide as a product of two isometries, it must itself be an

isometry. In fact, g−1 is a also a glide, with the opposite axial vector ~BA = − ~AB,
The actual axis is the same.

(d) Being a product of a direct and opposite isometry, a glide must itself be opposite.
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8 Practical calculations with isometries.

1. Theorem Suppose lines m1,m2 meet at C and the angle from m1 to m2 is θ:

P

C
P

P

α
α

β
β

θ  = α  +  β
m

m2

1

Let rj be the reflection with mirror mj. Then r2r1 is the rotation with centre C and
angle 2θ.

Proof. See the diagram. Note that this result does not depend on explicit properties
of parallelism. It holds in non-Euclidean geometry, too. �

(a) Note the interaction of species here. A analogous result holds when m1 and m2

are parallel. In that case r2r1 is the translation through twice the vector running
orthogonally from m1 to m2.

(b) How is θ ambiguous? Why doesn’t it matter?

(c) Order does matter. Usually r1r2 6= r2r1.

(d) If m1 = m2, then r1 = r2 and r2r1 = r1r1 = 1. Suppose m1 6= m2. When does
r1r2 = r2r1?

Answer: When m1⊥m2 and then r1r2 = r2r1 = hC .

(e) r2r1 = s = rotation with centre C, and angle 2θ.
↑ ↑ ↑
mirrors no mirrors any more!
m1,m2 through

C

The devious insight here comes from turning this around. Given a rotation s we
can factor

s = r2r1

choosing m1 (or m2) through C arbitrarily, adjusting m2 (or m1) appropriately.
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2. Example.

A

C B
m

mm

1

3
2

(a) let rj be reflection in mj. Compute r2r1, r1r2, r1r2r1 and r2r1r2.

(b) Let s = 60◦ rotation at C and s̃ = 60◦ rotation at B. Compute ss̃, s̃s and ss̃−1.

9 Subgroups of the group of all isometries

1. The collection of all isometries f of E forms an infinite group ISOM.

Verify this.

2. Interesting subgroups of ISOM.

Definition. By a figure K in the plane we mean any subset K ⊆ E.

(a) The symmetry group of K is

Sym(K) = { isometries f which map K onto itself (globally)}

Note that although f(K) = K for all f ∈ Sym(K), it is quite possible for the
constituent points P ∈ K to move ‘internally’.

Why is a Sym(K) a group?

(b) In more restricted fashion, we define Fix(K) to be the collection of all isometries
which fix each point of K.

Verify that Fix(K) is indeed a group.

(c) In fact we have these subgroup relationships:

Fix (K) ⊆ Sym (K) ⊆ Isom.

3. Examples. Clearly describe all isometries in Fix (K) and Sym (K) when

(a) K = {A,B} (two distinct points).

(b) K is a line m.

(c) K is a circle.

(d) K = ∅ (the empty set).
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(e) K = {O}, one specific point. In this case Fix (O) = Sym (O) ! The resulting
infinite group is called the orthogonal group for the plane. We sometimes denote
it by O(E).
Convince yourself that the orthogonal group at O consists of all rotations with
centre O (including 1), together with all reflections in lines through O.

The rotations alone constitute a subgroup of index 2 in O(E); this subgroup is
called the special orthogonal group and is denoted SO(E).

4. Note: Rather similar things happen in n > 3 dimensions, though the details are
somewhat more intricate. For example, in Euclidean 3-space there are 6 species of
isometry.

10 Justifying our Intuition.

1. If ABC is any triangle in E, then each point P ∈ E is uniquely determined by its
distances (in order) to A,B,C.

Proof. Use the Lemma on the perpendicular bisector. �

2. The action of an isometry f on any specific triangle.

Suppose

f : ABC → A′B′C ′.

Then

4ABC ≡ 4A′B′C ′.

Proof. Use SSS. �

3. Suppose ABC are the vertices of a triangle. If f : ABC → ABC, then f = 1.

(We mean of course that f maps the vertices in order; thus f fixes each vertex of
4ABC .)

Proof. Again use the Lemma on the perpendicular bisector. �

4. If both f, g = ABC → A′B′C ′, then f = g.

Proof. Use the previous result! �
Meaning: Each isometry is completely determined by its effect on one particular
triangle. There may be a convenient triangle which makes the calculations easy.

5. Exercise. Reprove the theorem that a product of reflections in intersecting mirrors is
a particular rotation. Ditto when the mirrors are parallel.
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6. The Three Reflections Theorem Any isometry f : E → E is a product of at most
three reflections.

Remark: This is an absolute theorem. It holds just as well in the non-Euclidean plane
H2. However, the details for the various species there play out in a slightly different
way. Indeed in H2 there are 5 rather than 4 species.

Proof. Pick any one triangle 4ABC to work with. Suppose f : ABC → A′B′C ′, so
that AB = A′B′, AC = A′C ′ and BC = B′C ′.

(a) If necessary, i.e. if A 6= A′, apply to 4ABC reflection r1 in the perpendicular bi-
sector of segment AA′. Thus r1 maps4ABC to the congruent triangle4A′B′′C ′′.
Thus A′B′ = AB = A′B′′, so that A′ is on the perpendicular bisector of segment
B′B′′.

(b) If necessary, i.e. if B′ 6= B′′, apply reflection r2 in the perpendicular bisector of
segment B′B′′. Thus r2 fixes A′ and maps 4A′B′′C ′′ to the congruent triangle
4A′B′C ′′′.

(c) Now both A′ and B′ are on the perpendicular bisector of segment C ′C ′′′. If
necessary, i.e. if C ′′′ 6= C ′, apply reflection r3 in the perpendicular bisector of
segment C ′C ′′′. Then r3 maps 4A′B′C ′′′ to the congruent triangle 4A′B′C ′.

In summary, the product r3r2r1 (with the unnecessary reflections deleted) maps
4ABC to 4A′B′C ′. Thus f = r3r2r1. �

7. (a) Corollary 1: If f fixes a point O, at most 2 reflections are required. Thus every
isometry fixing a point O is a rotation centred at O, or a reflection in some line
through O.

(This solves an earlier problem on the constitution of the orthogonal group O(E).)
(b) Corollary 2: If f fixes two points A 6= B, then either f = 1 or f is the reflection

in the line AB.

(c) Remarks: From these results, it is now a routine matter to classify all isometries
in ISOM. Similarly, in Euclidean n-space, every isometry is the product of at most
n+ 1 reflections.

8. Let K be any subset of E, infinite or not. In many cases of interest there are finitely
many points P1, . . . , Pn ∈ K which are permuted amongst themselves by all isometries
f ∈ Sym(K). (Think of a square K whose vertices are P1, P2, P3, P4.) In short, we
have

Sym(K) ⊆ Sym({P1, . . . , Pn}) .
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In such cases, we can define a function

ϕ : Sym(K) → Sn

by
(ϕf)(i) = j

for f ∈ Sym(K) and whenever

f(Pi) = Pj

( = P(ϕf)(i)),

1 6 i, j 6 n.

Briefly, we try to track isometries by their action on a key set of points.

Theorem ϕ is a homomorphism.

This is a routine check. If P1, . . . , Pn do not all lie on one line , then ϕ is 1− 1, by (3)
just above. Furthermore, Sym(K) can be then identified with a subgroup of Sn, the
symmetric group on n symbols. In particular, Sym(K) is finite.

For example, the symmetry group of the square, which has order 8, is a subgroup of
S4 (order 24).
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11 Coordinates

Let O be any base point (origin). We thus know that the orthogonal group O(E) = Fix(O)
consists of all rotations centred at O together with all reflections in lines through O.

Project. Describe O(E) algebraically using coordinates and matrices.

1. Having fixed an origin O, let’s introduce the standard basis vectors ~e1, ~e2. These vectors
are orthonormal : mutually perpendicular and each of length 1.

O

P

unit circle

p

e
2e

1x

2x 2e

1e

1

2. Any point P ∈ E can be located by its position vector ~p = ~OP . Since {~e1, ~e2} is a
basis, there exist unique real numbers x1, x2 such that

~p = x1~e1 + x2~e2 .

Observe that (x1, x2) are the usual rectangular coordinates for P .

Remarks

(a) The fact that {~e1, ~e2} is a basis is equivalent to unique coordinates existing for
each point P ∈ E. This in turn is equivalent to having a linearly independent
spanning set of vectors (here ~e1, ~e2).

(b) In the plane, any two vectors, neither of which is a multiple of the other, will serve
as an alternate basis. Sometimes calculations are greatly simplified by working
with a non-standard basis.

(c) For the purposes of calculations to come, it is very helpful to assemble the coor-
dinates into a 2× 1 column vector. Let us simply write

~p =

[
x1

x2

]
.

It turns out that columns serve better than rows, since (illogically) we compose
functions right to left.
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(d) As examples, note that

~e1 =

[
1
0

]
, ~e2 =

[
0
1

]
, ~o = ~OO =

[
0
0

]
.

(e) The geometrical linear combination

~p = x1~e1 + x2~e2

becomes this component-wise calculation with column vectors:[
x1

x2

]
= x1

[
1
0

]
+ x2

[
0
1

]
.

(f) Having made these connections, we can now identify E with R2.

3. A linear transformation on E (well, on R2 to be precise) is a function which ‘respects
the vector’ operations:

f : R2 → R2

where

f(~p+ ~q) = f(~p) + f(~q)

f(t~p) = tf(~p)

for all vectors ~p, ~q ∈ R2 and all scalars t ∈ R.
Remarks:

(a) In general, f need not be 1 − 1 or onto, although orthogonal isometries, being
bijections, do have these properties.

(b) More generally, the domain and range could be different vector spaces, as in
f : V → W .

(c) Taking t = 0, we conclude that
f(~0) = ~0

is forced.

Now f(~e1) and f(~e2) are specific vectors. Suppose

f(~e1) = f(

[
1
0

]
) =

[
a11
a21

]
and

f(~e2) = f(

[
0
1

]
) =

[
a12
a22

]
.

Thus in the scalar aij, the subscript i indicates the coordinate number, and the sub-
script j indicates the input number.
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O a

a

a

a 11

21

12

22

e
2e

1f(e   ) 

2f(e   ) 

1

(The transformation f suggested in the figure definitely distorts distances and so could
not represent an isometry.)

In general, if we apply f to

~p =

[
x1

x2

]
= x1

[
1
0

]
+ x2

[
0
1

]
,

we obtain

f(~p) = f(x1~e1 + x2~e2)

= f(x1~e1) + f(x2~e2)

= x1f(~e1) + x2f(~e2)

= x1

[
a11
a21

]
+ x2

[
a12
a22

]
=

[
a11x1 + a12x2

a21x1 + a22x2

]
=

[
a11 a12
a21 a22

] [
x1

x2

]
= A~p ,

where

A =

[
a11 a12
a21 a22

]
is the fixed coefficient matrix for the linear transformation f . Note the natural roles
of matrix addition, scalar multiplication and matrix multiplication.
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4. In general, having chosen explicit bases, every linear transformation yields a matrix.
The algebraic interaction of the linear transformations is exactly paralleled by the
algebraic interaction of the matrices. (Technically, we have an algebra isomorphism.)
For us, the key things to note are that

(a) If f and g are linear transformations on R2, with 2× 2 matrices A and B, respec-
tively, then f ◦ g, or just fg for simplicity, is also a linear transformation; and its
matrix is the product AB.

(b) The identity 1 = 1R2 is a linear transformation; and its matrix is the identity
matrix

I =

[
1 0
0 1

]
.

(c) If the linear transformation f is bijective, then the inverse function f−1 is also
a linear transformation; and if f has matrix A, then f−1 has matrix A−1 (the
matrix inverse).

You should ponder and prove these claims.

One conclusion to be made from these observations is that the collection of invertible
linear transfromations from a vector space V to itself forms a group (as usual with
compostion of functions for the operation).

Definition: This group is denoted GL(V ). Likewise, the collection of all invertible
2× 2 real matrices forms a non-abelian group, denoted

GL2(R) .

5. Keep in mind: we could keep the same transformations, but change from the usual
orthonormal basis {~e1, ~e2} to any other basis. The resulting matrices would very likely
change, yet still describe the same geometric situation.

Thus, we may guess that a wise, even unconventional, choice of basis may greatly
simplify the matrix calculations.
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6. We have strayed a bit from isometries into much more general territory. Let’s return
to isometries.

Theorem Any isometry f on E, which fixes O, is an invertible linear transformation.
With respect to the usual orthonormal basis {~e1, ~e2}, each isometry f is represented
by an orthogonal matrix A, namely a matrix satisfying

ATA = I .

(Thus, very simply, A−1 = AT .)

The orthogonal group O(E), consisting of all isometries fixing an origin O, is isomorphic
to the group O2(R) of all orthogonal 2 matrices. The direct isometries (rotations
centred at O) correspond to orthogonal matrices with determinant +1. The opposite
isometries (reflections in mirrors through O) correspond to orthogonal matrices with
determinant −1.

Proof : The key is to remember that isometries preserve shapes, such as the shape of
the parallelogram that underlies vector addition. Also an isometry preserves the ratios
of lengths that underly scalar multiplication. One checks then that an isometry fixing
O induces a linear transformation on R2.

In short, any isometry f is represented by some sort of 2× 2 real matrix A. But what
special property of A comes from f being an isometry?

First, we note that f must preserve inner products To see this, suppose

~u =

[
u1

u2

]
, ~v =

[
v1
v2

]
.

Then

~u · ~v = u1v1 + u2v2

=
1

4
[ (u1 + v1)

2 + (u2 + v2)
2 − (u1 − v1)

2 − (u2 − v2)
2 ]

=
1

4
( ‖~u+ ~v‖2 − ‖~u− ~v‖2 ) .

This polarization identity says that the inner product can be expressed in terms of the
side and diagonal lengths in a suitable parallelogram:

u  +  v

u

v

u  −  v

O
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Since any isometry f preserves the shape of this paralleogram, it must also preserve
inner products:

f(~u) · f(~v) = ~u · ~v, ∀~u,~v ∈ R2 .

But
~u · ~v = ~uT~v ,

where the 1 × 1 matrix product on the right is treated as a simple scalar. Hence, for
all vectors ~u,~v ∈ R2, we have

(A~u)T (A~v) = ~uT~v

~uTATA~v = ~uT I~v

where I is the 2× 2 identity matrix. Since ~u,~v are arbitrary, we conclude that
ATA = I. �

7. Exercises

(a) Give orthogonal matrices which describe

• reflection in the x-axis

• reflection in the y-axis

• the half-turn hO centred at the origin

• the identity 1

(b) Rotation matrices.

• Give the rotation matrix Aα for the rotation sα centred at O, through angle
α.

• What is A0 ?

• What is A−α?

• Describe – on geometrical grounds – the product of isometries sαsβ.

• Use the previous part to rewrite

AαAβ

as a single rotation matrix.

• Look at the entries in theresulting matrix identity. What important facts
have you proved?
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12 One Group from Several Points of View — Abstrac-

tion

1. Geometrical Symmetry: letG be the group of symmetries for an equilateral triangle.
We know that there are three rotations, including the identity, say 1, s1, s2, together
with three reflections r1, r2, r3. Thus

G = {1, s1, s2, r1, r2, r3} ,

with right to left composition as usual.

Of course, |G| = 6.

A

C B
m

mm

1

3
2

Exercise. Write out the multiplication table for G. Remember that fg means first
apply the isometry g to the triangle, then the isometry f .

2. Permutations: label the vertices of the triangle 1, 2, 3. Since each isometry of the
plane is determined by its effect on this triangle, we can unambiguously track the
isometries via permutations of {1, 2, 3}. We obtain the permutation group

S3 = {( ), (1, 2, 3), (1, 3, 2), (2, 3), (1, 3), (1, 2)}

(again composed right to left as functions).

We have seen that G ' S3. Explicitly, there is an isomorphism mapping

G → S3

1 7→ ( )

s1 7→ (1, 2, 3)

s2 7→ (1, 3, 2)

r1 7→ (2, 3)

r2 7→ (1, 3)

r3 7→ (1, 2)
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3. Matrices (version 1) : orthogonal. Place the origin O at the centre of the triangle.
Thus every symmetry of the triangle fixes O.

Compute relative to the usual orthonormal basis. After rescaling the triangle, we
may assume that the top vertex is

~e2 =

[
0
1

]
.

As usual,

~e1 =

[
1
0

]
is the unit vector pointing east. We then get a matrix group M1 in which the above
isometries are represented in order as[

1 0
0 1

]
,

[
−1/2 −

√
3/2√

3/2 −1/2

]
,

[
−1/2

√
3/2

−
√
3/2 −1/2

]
,

[
−1 0
0 1

]
,

[
1/2

√
3/2√

3/2 −1/2

]
,

[
1/2 −

√
3/2

−
√
3/2 −1/2

]
.

Here each matrix is orthogonal: to get the inverse, simply transpose.

4. Matrices (version 2) : nice but not orthogonal

We can actually employ any basis that we want. But it makes sense to choose a ‘nice’
basis. So let’s take vertices 1 and 2 of the triangle as the new basis vectors ~d1 and ~d2.
Because the triangle is equilateral, we see that vertex 3 is given by −~d1 − ~d2. A little
computation gives a new set M2 of matrices for the original isometries, again in the
original order: [

1 0
0 1

]
,

[
0 −1
1 −1

]
,

[
−1 1
−1 0

]
,

[
1 −1
0 −1

]
,

[
−1 0
−1 1

]
,

[
0 1
1 0

]
.

Thus the entries of these new matrices are a little nicer to work with.

We have the same group, of course; but since the basis is non-standard, the correspond-
ing coordinates are non-standard and measurement works differently. For example, the
usual inner product x1y1 + x2y2 using new coordinates does not usefully measure any-
thing.

5. The trace of a square matrix A is the sum of its diagonal entries, say

tr(A) :=
∑
j

ajj .

Thus the trace of a matrix is a very special scalar.

Notice that corresponding matrices in the above groups have identical traces. Why is
this so?
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Well, we have changed basis according to this rule:

~d1 = ~e2 = 0~e1 + 1~e2 , ~d2 = (−
√
3/2)~e1 + (−1/2)~e2 .

Thus the corresponding basis change matrix is

B =

[
0 −

√
3/2

1 −1/2

]
.

Symbolically we should think

(new basis ~d1, ~d2 in a row) = (old basis ~e1, ~e2 in a row) B

It follows that if A is one of the six ‘old’ matrices in M1, then the corresponding ‘new’
matrix in M2 is

B−1AB .

Remark: the exact arrangement of matrices here is a little tricky. Of course, much
the same procedure works in n dimensions.

Let’s return to the traces. It is easy to check for square n× n matrices A and C that

tr(AC) = tr(CA) .

(Do this as an exercise.) Thus

tr(B−1(AB)) = tr((AB)B−1)

= tr(A(BB−1))

= tr(A(I))

= tr(A) .

In short, basis change does not change the trace values for matrix group representations
of the original group G.

These trace values are called the character values for the matrix representation.
Indeed, they serve to classify and distinguish essentially different matrix representations
for one and the same group G.

In a sense, the character values (traces) contain just enough numerical information to
completely determine the matrix group (up to a change in basis). All other numerical
data in the matrices is clutter.

6. Exercise. Prove that conjugate elements in G must have identical character values.

The upshot, which is quite hard to prove, is that a matrix group is determined by k
scalars, where k is the class number = number of conjugacy classes in G.
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7. The first level of abstraction: the mutiplication table of G: In a basic way,
the multiplication table alone completely defines G, though we must of course inspect
the table to root out the interesting properties of G. In this abstract point of view,
we forget all concrete representations such as isometries, permutations, matrices, etc.
and think merely of |G| symbols combined according to the table.

r
3r2r1s1

2s

2s

s1

r1

r2

r
3

s1 2s r1 r2 r
3

s1

2s

r1

r2

r
3

2s

s1

s1

2s

2s

2s

s1

s1

r2
r
3

r
3

r1 r2

r1

r
3 r2r1

r
3r2

r1

1

1

1

1

1

1

1

1

8. The second and universal level of abstraction: a presentation for G. Intu-
itively, a presentation for a group G is a ‘concise’ summary of the multiplication table,
basically a minimal amount of information which would suffice to reconstruct the whole
table. Note that this means that

• we should be able to reconstruct all elements of the group; and

• we should be able to say how all elements multiply.

Now let’s be more precise. What we require in a presentation is

(a) a (preferably small) set of generators a, b, c, . . . for the group G. This means that
every element g ∈ G is a product of these generators or their inverses, allowing
repeats. Such a product is often called a word in the generators. Examples are
a, aa−1, abaaab−1b−1cc etc. Of course, these can sometimes be simplified using the
basic laws of exponents valid for all groups:

aa−1 = 1 , abaaab−1b−1cc = aba3b−2c2 .

But there could well be other simplifications possible due to special features of
the group G in question. These peculiarities are given by

(b) a set of relations (a.k.a. relators) satisfied by the given generators and from
which all valid relations in G follow by algebraic manipulations in the group.
This is a little hard to define more precisely, so here we will just sketch a few
examples and state the key theorems.

9. Example. Suppose in the calculation just above, we do know that ab = ba, which can
be rewritten as aba−1b−1 = 1. Then we achieve a further simplification:

abaaab−1b−1cc = a4b−1c2 .
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10. Example. Suppose G is generated by two elements a, b which satisfy the relations

a2 = b2 = (ab)3 = 1 (∗∗)

Various different groups have these generators and satisfy the relations!!

(a) a = b = 1 (say the integer 1); so G = {1} has order 1.

(b) a = b = −1 (again integers ). Check that the relations (**) are satisfied. What
now is the order of G?

(c) Another possibility using ordinary integers? a = 1 and b = −1. Are all the
relations (**) above satisfied?

(d) Now try the symmetry group of the equilateral triangle above. Let a = ? and b =
? be carefully chosen symmetries. Do they generate the full symmetry group?
Do they satisfy the relations (**)?
Hint: your choices for a and b will be closely guided by the relations to be satisfied.

(e) Thus the order of G could be as big as 6. Could it be larger still? Try to compute
the possibilities!! Take all possible combinations of a, b, a−1, b−1, subject to the
relations (**), and determine how many truly different elements you can get. For
example, a2 = 1 implies a2a−1 = 1a−1, so that a = a−1. In short, in this example,
negative poweres of the generators are unnecessary, and at the outset, we can
restrict only to positive integral exponents.

(f) In fact, there is a largest such group satisfying (**) !! And its order is

Remark: the peculiar structure of the relations in (**) means that the symmetry
group of the equilateral triangle is the Coxeter group of type A2.
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11. Theorem. Consider all groups generated by generators

a, b, c . . .

satisfying specified relations
w1 = w2 = . . . = 1

(namely certain special words in the generators).

Then there exists a ‘largest’ such group, denoted

G = 〈a, b, c . . . | w1 = w2 = . . . = 1〉

(This is called a presentation for the group G.)

More precisely, if H is any other group with corresponding generators ã, b̃, c̃ . . . sat-
isfying the corresponding relations w̃1 = w̃2 = . . . = 1̃, then there exists a unique
homomorphism

ϕ : G → H

which explicitly sends a to ã, b to b̃, etc.

12. Remarks.

(a) This is a very powerful theorem. For example, it says that we can construct groups
at will, choosing random symbols for generators, random equations for relations.
Of course, the resulting groups could be trivial (order 1), could be infinite, could
be uninteresting.

(b) Recall that H ' G/ kerϕ. Hence,

|G| = |H| | kerϕ| .

Since |H| divides |G|, we do indeed find that |G| > |H|. In this sense, G is the
largest group satisfying the relations. (It could be infinite.)

(c) It is a nice exercise to use the theorem to prove that G is uniquely defined up to
isomorphism.
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13. Exercises on presentations. Compute the orders of these groups and describe each
in more familiar terms (e.g. symmetry group of equilateral triangle).

(a) G = 〈a | a2 = 1〉
(b) G = 〈b | b3 = 1〉
(c) G = 〈a, b | a2 = b2 = (ab)4 = 1〉
(d) G = 〈a, b | a2 = b4 = aba−1b−1 = 1〉
(e) G = 〈a, b, c | a2 = b2 = c2 = (ab)3 = (bc)3 = (ac)2 = 1〉
(f) G = 〈a, b | a2 = b2 = (ab)2〉

Warning: we aren’t saying a2 = 1 here; rather, the relations are just clean ways
of writing

a2b−2 = a2(ab)−2 = 1 .

It is still possible, for example, that a has infinite period!!

(g) G = 〈a, b | a2 = b2 = 1〉
(h) G = 〈a, b | a3 = b3 = (ab)3 = 1〉
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13 Conjugacy and Characters

Here are several exercises to bolster your understanding of conjugacy and and characters.
Try to construct your own proofs before consulting a standard text.

Usually

G will be a general finite group, its order denoted by |G|. Its identity will
usually be e.

1. Recall that b is conjugate to c in a group G if b = gcg−1 for some g ∈ G. Let us
indicate this by

b ∼ c

Theorem. ∼ is an equivalence relation.

Proof. Supply details:

�

2. Thus each element b ∈ G belongs to a unique equivalence class, called naturally a
conjugacy class. Let’s denote this class by Cl(b). Thus, |Cl(b)| is the number of
elements of G which are conjugate to b (including b itself, of course).

3. Remarks for Discussion: when G is a geometrical group, the conjugacy classes
correspond to ‘geometrically distinct’ kinds of isometries. For example, for an ordinary
square the rotational symmetries and the reflections lie in different conjugacy classes.
In fact, the reflections themselves split into two distinct conjugacy classes. What are
they?

In the full permutation group Sn, the conjugacy classes correspond to the essentially
different ways of writing n as a sum of positive integers.
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4. Suppose a group G has k conjugacy classes. Choose at random an element bj in the
jth class.

Exercises.

(a) One such class representative is forced. Which is it and how big is that conjugacy
class?

(b) Simplify
k∑

j=1

|Cl(bj)| =

5. Fix an element b ∈ G. Then the centralizer of b in G is the set of all elements of G
which commute with b:

C(b) := {g ∈ G | gb = bg} .

Theorem. C(b) is a subgroup of G.

Proof. Supply details concerning identity e, closure under inverse, products.

�

6. Exercises.

(a) What is C(e) ?

(b) Show that always b ∈ C(b). Ditto for b−1, in fact for any bn, where n ∈ Z.
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7. Theorem. Suppose b = gcg−1 (so that b ∼ c). Then

C(b) = g C(c) g−1 .

Remark: thus conjugate elements have conjugate centralizers. Two such groups must
be isomorphic, and so have the same size.

Proof. Supply details. �

Now for the really neat theorem!!

8. Theorem. The number of conjugates of b in G equals the index of the centralizer of
B:

|Cl(b)| = [G : C(b)] .

Hence, the number of elements in a conjugacy class divides the order of the group.

Proof. Fix b ∈ G. Put the left cosets of C(b) into a set

LC := {g C(b) : g ∈ G}

Remember that in a set we count only distinct elements. Thus

|LC| = |G|
|C(b)|

= t (say).

It is not useful here, but one could choose explicit coset representatives g1, . . . , gt, so
that the different cosets in LC would then be g1C(b), . . . , gtC(b).

Define

ϕ : Cl(b) → LC

gbg−1 7→ gC(b)

Supply details that ϕ is well-defined, onto and 1–1.

�
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9. Exercises.

(a) Let G = S4, with standard generators r1 = (1 2), r2 = (2 3), r3 = (3 4). Fill in the
data in the following table:

Class Rep. Factorization of b Size |G| Explicit list of conjugates

b in terms of the rj’s C(b) |C(b)|
()

(1 2)

(1 2)(3 4)

(1 2 3)

(1 2 3 4)

(b) Do the same thing for S5, say with generators r1 = (1 2), r2 = (2 3), r3 = (3 4) and
r4 = (4 5).

You needn’t however explicitly list the conjugates.

(c) How many conjugacy classes does S6 have?

(d) Let G be the symmetry group of a cube. What is |G|? How many conjugacy
classes does G have and what are their sizes?
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